
Continuations in X

Charles Collicutt

Project Supervisor: Steffen van Bakel
Second Marker: Maria Vigliotti

Department of Computing, Imperial College London, 180 Queen’s Gate, London, SW7 2BZ
cac04@doc.ic.ac.uk

June 19, 2007

1

Contents

1 Introduction 4

2 What is a continuation? 5

3 Classical and Intuitionistic Logic 14

4 Natural Deduction and Gentzen’s Sequent Calculus 15

5 The simply typedλ-calculus and Curry-Howard Isomorphism 16
5.1 Reduction Strategies 16

6 X 17
6.1 Syntax .. 17
6.2 Reduction .. . 17
6.3 Reduction Strategies 19
6.4 Typing forX . 20

7 Parigot’s λµ-calculus 21

8 Bierman’s Abstract Machine 24
8.1 Evaluation Contexts 24
8.2 The Machine .. 24

9 From λµ to X 26

10 From X to λµ 28
10.1 The Translation 28
10.2 Proof of Type Preservation 29

11 From X to the Machine 32

12 Conclusion 34

2

Abstract

A one-to-one correspondence, known as theCurry-Howard Isomorphismafter its discoverers, has
been shown to exist between the simply typedλ-calculus and implicative intuitionistic logic in a nat-
ural deduction framework. This correspondence has allowedresearchers to analyse the links between
intuitionistic logic and function abstraction and application. X is a logical calculus that exhibits a
Curry-Howard Isomorphism with implicative classical logic. Research has shown that classical logic
is linked to control in computation. Unlike most logical calculi, X has no notion of function abstrac-
tion or application nor does it include variables or substitution. Instead,X describes structures called
“circuits” that consist of named “plugs” and “sockets” thatcan be wired together. There is a notion of
“flow” through these circuits, which leads to the intuition that, rather than modelling functional pro-
gramming like theλ-calculus,X models control flow and continuations. In this project I investigate
the representation of continuations inX . By constructing a translation fromX to an abstract machine
that models the saving and restoration of evaluation contexts, I reveal how reduction inX corresponds
to operations on continuations.

Acknowledgements

I would like to thank Dr. van Bakel for his support and encouragement and for providing me with
the most interesting and enjoyable part of my course.

I would like to thank Alex Summers for his advice and explanations.

3

1 Introduction

The λ-calculus [4] has proved very useful for the investigation of function abstraction and applica-
tion. It inspired the functional programming paradigm, including the languages LISP, ML and Haskell.
Through the Curry-Howard Isomorphism [8], a one-to-one correspondence between implicative intu-
itionistic logic and the simply typedλ-calculus has been established. This gives us an insight into the
relationship between logic and computation. However, intuitionistic logic is not as expressive as classi-
cal logic. Recently, various new calculi have been inventedthat exhibit a Curry-Howard Isomorphism
with fragments of classical logic. Investigations of thesecalculi have revealed a link between classical
logic and control and continuations [7, 9, 12, 1, 2, 5].
X is a language that exhibits the Curry-Howard Isomorphism with the implicative fragment of clas-

sical logic [16]. Whereas typing for theλ-calculus is based on natural deduction,X is inspired by
Gentzen’s sequent calculus [14]. Function abstraction andapplication do not appear inX (although
they can be interpreted) and it does not have variables or substitution. Instead,X describes structures
called “circuits” (or “nets”) whose component parts can be connected together. A circuit may contain
a number of “plugs” that can be connected to the “sockets” of another circuit (or vice versa.) We have
a notion of “flow” through the circuits - that is to say, the connections between plugs and sockets have
a direction. Thus, intuitively,X seems to model contexts or continuations. The purpose of my project
has been to elucidate this idea: I will show how continuations are represented inX and how reductions
in X are related to operations on continuations. This will provide us with a further insight into the link
between classical logic and computation.

Parigot extended theλ-calculus to create a new calculus which would correspond toa fragment of
classical logic [13]. He called his calculusλµ. However, unlikeX , Parigot’sλµ is still based on a
natural deduction framework. Bierman has shown [5] thatλµ can be interpreted as “a typedλ-calculus
which is able to save and restore the runtime environment.” He provides an abstract machine forλµ

which demonstrates its ability to represent the saving and restoring of continuations. So for my project
I have investigated representations ofλµ in X (and vice versa) and have produced a translation from
X to Bierman’s abstract machine viaλµ. Having proved the completeness and consistency of this
translation, I have used it to discover then illustrate the representation of continuations inX .

4

2 What is a continuation?

Continuations are a concept used todynamicallymodify the control flow of a program. In order to
explain what I mean by this, it will first be necessary to recall some better knownstatic methods
of modifying a program’s control flow. By “static method” I mean a method whose effects can be
completely analysed statically, i.e. without running the program. Because such analysis depends only
on the source code of the program (and not the context in whichit is run) I will use “lexical” as a
synonym for “static”.

The most general lexical method of altering the control flow of a program is thegoto statement.
This statement causes control to jump to a label elsewhere inthe program: the target label may appear
anywhere in the program. All that happens in practice is thattheprogram counteris overwritten with
the address of the instruction referred to by the label. Thusthegoto statement can be used to cause
control to jump to any point in the program. For example, consider the C program in Listing 1.

Listing 1: goto in C

int i = 0;
firstlabel:

++i;
printf("%d", i);
goto thirdlabel;

secondlabel:
--i;
printf("%d", i);

thirdlabel:
++i;
goto firstlabel;

When compiled and run, this program will output all the odd natural numbers in ascending order.
The code between the second and third labels will never be executed: control jumps to the third label
then back to the firstad infinitum.

In order to better structure our control of the program, we can introduce the notion of structure into
the program’s code. Typically this is done by dividing the program into nestedblocks. Now we have
an outermost block, consisting of the program in its entirety, within which there are blocks of code that
may themselves contain further blocks. Most trivially, we can use these blocks to implement loops and
conditionals. For example, the C program in Listing 2 will output the odd natural numbers less than 20
in ascending order and it will do so five times.

5

Listing 2: Structuring with blocks

int i = 0;
int j = 0;

while (i < 5) {
while (j < 20) {

if (j % 2 != 0) printf("%d", j);
++j;

}
j = 0;
++i;

}

Here the blocks are denoted by curly braces and are used to determine the scope ofwhile loops.
Now that the program is lexically structured into blocks, wecan use that structure to implement a
more structured (i.e. restricted) version ofgoto. In fact, thewhile loop is itself a combination of a
conditional and a structuredgoto. However, more interestingly, in C we can use thebreak statement
to make control jump outside the current block. Listing 3 contains an alternative implementation of the
program in Listing 2 usingbreak statements.

Listing 3: Breaking out of blocks

int i = 0;
int j = 0;

while (1) {
while (1) {

if (j % 2 != 0) printf("%d", j);
++j;
if (j > 19) break;

}
j = 0;
++i;
if (i > 4) break;

}

Herebreak is acting likegoto but it is restricted to jumping “outwards”. It cannot cause control
to jump to any arbitrary point in the program asgoto can, instead it can only cause control to jump
into an outer block. This is even more obvious in Java, in which thebreak statement is more flexible
than in C. In Java, you canbreak to a label in much the same way that you would usegoto but you
can only do so if the label is in an outer block. For example, ifyou were searching through a matrix for
an instance of the integer 13 you might do something like Listing 4.

6

Listing 4: Breaking to a label

int i = 0;
int j = 0;
boolean found = false;

outside:
while (i < WIDTH) {

while (j < HEIGHT) {
if (matrix[i][j] == 13 {

found = true;
break outside;

}
++j;

}
++i;

}

Although the Java syntax requires you to place the label at the beginning of the block from which
you wish to escape, it is clearly much the same as agoto. However, Listing 5 is not valid Java code.

Listing 5: Invalid Java Break

while (i < MAXI) {
while (j < MAXJ) {

break sideways;
}

}

while (k < MAXK) {
sideways:
while (l < MAXL) {
}

}

Here an attempt is made to jump not to an outer block but to another block at the same depth in the
“nesting tree”. Whilegoto can perform such arbitrary jumps, the more restrictedbreak cannot. For
this reason, we might callbreak an “outgoing-onlygoto”.

Continuations are also used to modify the control flow of a program but they do not do so statically.
Their behaviour cannot be completely determined by a lexical analysis. Rather than dealing with lexical
structures such as blocks, continuations operate on the control stack itself. So it will now be useful to
investigate the idea of a control stack.

If we ignore for the moment the method of passing arguments and returning results, a function call
consists of two things. Some control information, such as the return address and the stack base pointer,
is pushed onto the stack and control jumps to the beginning ofthe function code. When the function
has completed, the control information is used to jump back to the point in the program at which the
function was called and to pop everything that the function pushed onto the stack. So we can view the
stack as being divided intoframes. Every time a function is called another frame is added to theend of

7

the stack and every time a function returns a frame is removedfrom the end of the stack.
But rather than considering the actual block of memory used as a stack, consider instead the slightly

more abstract idea of a control stack. It can be thought of as alinked list with each node corresponding
to a frame. Each frame contains the information local to thatfunction (thecontext) and a link back to
the frame of the function in which it was called. Thus every time a function is called, another frame is
added to the end of the list; and every time a function returns, its frame is removed from the end of the
list. Consider the C program in Listing 6.

Listing 6: A C program with nested function calls

int add2Ints(int x, int y) {
return x + y;

}

int add3Ints(x, y, z) {
int p = addTwoIntegers(x, y);
return p + z;

}

int main() {
int x = 1;
int y = 2;
int z = 3;

add3Ints(x, y, z);
add2Ints(y, z);

return 0;
}

As this program runs it would have a control stack that grows and shrinks like this:

main: x 7→ 1, y 7→ 2, z 7→ 3

main: x 7→ 1, y 7→ 2, z 7→ 3 add3Ints:x 7→ 1, y 7→ 2, z 7→ 3

main: x 7→ 1, y 7→ 2, z 7→ 3 add3Ints:x 7→ 1, y 7→ 2, z 7→ 3 add2Ints:x 7→ 1, y 7→ 2

main: x 7→ 1, y 7→ 2, z 7→ 3 add3Ints:x 7→ 1, y 7→ 2, z 7→ 3, p 7→ 3

main: x 7→ 1, y 7→ 2, z 7→ 3

main: x 7→ 1, y 7→ 2, z 7→ 3 add2Ints:x 7→ 2, y 7→ 3

main: x 7→ 1, y 7→ 2, z 7→ 3

8

If we make an analogy between lexical blocks and frames in a control stack, we can see that the
break statement is analogous to anexception. In languages that support this feature, it is possible to
throw (or raise) an exception. When this is done, execution in the current function stops and control
returns to the calling function, i.e. control moves from thecurrent frame to the next frame up the control
stack. This is much the same as returning from a function as shown above. However, unlike a function
return, if the exception is notcaught it will propagate up the control stack. Control will continue to
jump frame by frame up the control stack until either the exception is caught or the top of the stack is
reached and the program terminates.

An exception may be caught by enclosing the code that might lead to the throwing of an exception in
a try block. Attached to this try block should be acatchblock containing anexception handler, which
is a block of code to be executed in the event of an exception being caught. Exceptions are usually
used to signal that an error has occurred, so the exception handler tends to be code designed to help the
program recover from an error. Exceptions can be typed: in object-oriented languages they are usually
implemented as instances of anexception classwith a whole hierarchy of classes to represent different
types of errors. A single try block may be associated with multiple catch blocks, each one intended to
catch a different type of exception (perhaps one for an IO error, one for an array index out of bounds
error and so on.) Listing 7 demonstrates the use of exceptions in Java.

Listing 7: Exceptions in Java

public class Example {
private void riskyMethod() throws Exception {

// Do something that might result in an error
if (error == true) {

throw new Exception();
}

}

private void processData throws Exception {
try {

riskyMethod();
// Do some IO action here, e.g. read a file

} catch (IOException e) {
// Deal with the IO error

}
}

public static void main(String[] args) {
try {

processData();
} catch (Exception e) {

// Deal with the error
}
// Do something else

}
}

In this example, themainmethod calls theprocessDatamethod that in turn calls theriskyMethod
method. IfriskyMethod encounters an error it will throw an exception. Execution will immediately

9

cease inriskyMethod and the exception will be thrown again inprocessData. processData
will not catch this exception (as its catch block only catches exceptions of typeIOException)
so execution will cease inprocessData and the exception will be thrown again inmain. Here
the exception will be caught and execution will continue inmain after the try block. So, assuming
riskyMethod does indeed encounter an error, the control stack will grow and shrink like this:

main

main processData

main processData riskyMethod

main

Thus function returns, which cause control to move up one frame, are analogous tobreaking out of
the innermost block (asbreak does in C.) Whereas exceptions, which can propagate up through the
control stack and so cause control to jump many frames in one go, are analogous to labelledbreaks
in Java, which can jump out of many nested blocks in one go.

Just asbreak can be thought of as an “outgoing-onlygoto”, so exceptions can be thought of as
“upwards-only continuations” [10]. As we have seen, exceptions can only cause control to move up
the control stack. However, in languages that support first-class continuations, you can save a reference
to any frame and use that reference to move control to that frame at any time. Also, such languages
typically employ some form of garbage collection. This means that a frame is no longer automatically
removed when the function that created it returns: now a frame is only removed whenall references to
it have been deleted, including both the implicit referencefrom the frame above it in the control stack
and any other references that you might have created. Thus the control stack is no longer a stack at all
but instead an arbitrary graph.

For a program without anygoto statements, the lexical structure of the program can be described in
terms of nested blocks forming a hierarchical tree. The use of the unrestrictedgoto statement destroys
that structure by allowing control to jump to any arbitrary point in the tree. Analogously, for a program
without continuations, the control flow of the program can berepresented by a structured control stack.
The use of first-class continuations destroys that structure by turning the control stack into an arbitrary
control graph.

First-class continuations first appeared in the programming language LISP. In the Scheme dialect
of LISP there is a function calledcall-with-current-continuation, usually abbreviated to
call/cc. This function takes a single argument, which is itself a function that takes a single argument,
and it passes to that function a reference to the current continuation. Socall/cc calls its argument
with the current continuation. You can then, for instance, store the reference to the continuation in a
variable, which will allow you to invoke (restore) the continuation at another point in the program (in
Scheme, as in some other languages with first-class continuations, a continuation can be invoked by
calling it in the same way that you call a function.) Listing 8demonstrates this function [18].

10

Listing 8: call/cc in Scheme

(define aContinuation #f)

(define (test)
(let ((i 0))

(call/cc (lambda (k) (set! aContinuation k)))
(set! i (+ i 1))
i

)
)

In the first line of Listing 8, a variable calledaContinuation is defined with a dummy value. In
the rest of the listing, a function calledtest is defined. The whole body of the function sits within a
let block, which defines the local variablei and initialises it to zero. The first line of thelet block
invokes thecall/cc function.

Thelambda construction defines an anonymous function (the name is inspired by theλ-calculus)
which is passed as an argument tocall/cc, which calls its argument with a reference to the current
continuation. The anonymous function uses the built-inset! command to assign the reference to
the continuation to the global variableaContinuation. In the rest of thetest function, the local
variablei is incremented by one and then returned.

Assume the existence of an interactive Scheme interpreter which displays the return value of a func-
tion call. Listing 9 shows some results you could obtain having first run the program in Listing 8.

Listing 9: Running Listing 8 on an interpreter

> (test)
1
> (aContinuation)
2
> (aContinuation)
3
> (define anotherReference aContinuation)
> (test)
1
> (aContinuation)
2
> (anotherReference)
4

If we call the interpreter’s framemain, then running Listing 9 would cause the control “stack” to
develop as shown below.

11

main

main test1 : i 7→ 0

main test1 : i 7→ 0

main test1 : i 7→ 1

main test1 : i 7→ 1

main test1 : i 7→ 2

main test1 : i 7→ 3

main test1 : i 7→ 3

main test1 : i 7→ 3 test2 : i 7→ 0

main test1 : i 7→ 3 test2 : i 7→ 0

main test1 : i 7→ 3 test2 : i 7→ 1

main test1 : i 7→ 3 test2 : i 7→ 1

main test1 : i 7→ 3 test2 : i 7→ 2

main test1 : i 7→ 4 test2 : i 7→ 2

12

When discussing logical calculi, we can analyse continuations using the idea of anevaluation con-
text. The intuition behind the use of contexts is that a continuation is essentially a “calculation with
a hole in it.” The hole represents the result of some sub-calculation that has yet to be achieved and
the evaluation context describes what will happen to that result when it has been achieved (i.e. how
it will be evaluated.) In the terms that we have been using so far to describe continuations, the hole
represents the point in the control graph referred to by a continuation variable. For example, consider
the following arithmetical calculation:

2 × 4 + 3

According to the normal rules of precedence, the multiplication will be performed before the addi-
tion. So we could say that there is a continuation here: 3 willbe added to whatever the result of the
multiplication turns out to be. We can represent this by a formula with a hole in it:

•+ 3

A graph of the original calculation might look like this:

+

× 3

2 4

In which case the formula with a hole would look like this:

+

• 3

This gives us a useful method of representing continuationsin logical calculi as contexts and it is the
method I will use in this project.

13

3 Classical and Intuitionistic Logic

Intuitionistic logic is the logical system developed by Heyting as a formal basis for Brouwer’s intu-
itionistic mathematics [11]. According to Brouwer, in order to show(A ∨ B) you need a proof ofA or
a proof ofB. For example, consider the following mathematical proof [3].

Theorem 3.1 There are irrational numbers a and b such thatab is rational.

Proof: Consider
√

2

√
2
. If this is rational, we are done: we can leta = b =

√
2. Otherwise, it is

irrational. Then we have (√
2

√
2
)√

2

=
√

2

√
2×

√
2

=
√

2
2

= 2,

which is rational. So, in this case, leta be
√

2

√
2

and letb be
√

2.

Classically, this proof is valid. However, according to Brouwer’s intuitionism, it is not. We have
proved the existence of a pair of numbers that have a certain property but we are unable to saywhich
pair of numbers it is. An intuitionistic existence proof should provide an unconditional definition of the

objects it asserts to exist. The above proof rests on the assumption that “either
√

2

√
2

is rational or it is
not” but Brouwer would argue that such a claim needs further justification of its own.

This has the consequence that the law of excluded middle(A ∨ ¬A) is an axiom in classical logic
but not in intuitionistic logic. Thus there are proofs that are classically valid but intuitionistically
unprovable. However, a translation from classical proofs to intuitionistic proofs, first defined by Gödel
and Gentzen, links classical logic and intuitionistic logic.

Definition 3.2 (DOUBLE NEGATION TRANSLATION)
The translation⌈⌈·⌋⌋ is defined inductively as follows:

⌈⌈A⌋⌋ =
∆ ¬¬A, if A is atomic

⌈⌈A⇒B⌋⌋ =
∆ ⌈⌈A⌋⌋⇒⌈⌈B⌋⌋

⌈⌈A ∧ B⌋⌋ =
∆ ⌈⌈A⌋⌋ ∧ ⌈⌈B⌋⌋

⌈⌈A ∨ B⌋⌋ =
∆ ¬(¬⌈⌈A⌋⌋ ∧ ¬⌈⌈B⌋⌋)

Theorem 3.3 (DOUBLE NEGATION TRANSLATION)
Let A be a proposition composed of one or more atomic propositionsand the logical connectives∨, ∧
and ⇒. A is provable classically if and only if⌈⌈A⌋⌋ is provable intuitionistically.

Thus intuitionistic logic makes a distinction between¬(¬A ∧ ¬B) and(A ∨ B) that classical logic
does not make. However, the calculi in which we are interested for the purposes of my project only
correspond to implicative logic so we need only be concernedwith the first two translation rules.

14

4 Natural Deduction and Gentzen’s Sequent Calculus

In a deduction system with sequents, one can writeA ⊢ B to signify that “A justifies B”. A is
an assumptionand B is a conclusion. In the natural deduction system, there is only ever a sin-
gle conclusion but there may be multiple assumptions. SoA1, A2, . . . , An ⊢ B should be read as
A1 ∧ A2 ∧ . . . ∧ An ⊢ B. We useΓ to signify an arbitrary conjunction of assumptions.

Natural deduction rules either introduce or eliminate logical connectives on the right-hand side of
the sequent. For example, implicative intuitionistic logic can be represented in a natural deduction
framework with just three rules:

(Ax) : (A ∈ Γ)
Γ ⊢ A

(→I) :
Γ , A ⊢ B

Γ ⊢ A→B

(→E) :
Γ ⊢ A→B Γ ⊢ A

Γ ⊢ B

In contrast, the rules of Gentzen’s sequent calculusLK [14] only introduce connectives but can
do so to both sides of the sequent.LK allows sequents with multiple alternative conclusions, such as
A1, A2, . . . , An ⊢ B1, B2, . . . , Bn, which should be read asA1 ∧ A2 ∧ . . . ∧ An ⊢ B1 ∨ B2 ∨ . . . ∨ Bn.

We use∆ to signify an arbitrary disjunction of conclusions. The only way to eliminate a connective in
LK is to eliminate the whole formula in which it appears by an application of the(cut)-rule. LK (→) is
a variant of this calculus which can be used to represent implicative classical logic:

(Ax) : Γ , A ⊢ A, ∆ (cut) :
Γ ⊢ A, ∆ Γ , A ⊢ ∆

Γ ⊢ ∆

(⇒R) :
Γ , A ⊢ B, ∆

Γ ⊢ A⇒B, ∆
(⇒L) :

Γ ⊢ A, ∆ Γ , B ⊢ ∆

Γ , A⇒B ⊢ ∆

Gentzen defined acut-elimination procedurefor LK that removes all applications of the(cut)-rule
from a proof. He proved [14] that for anyLK proof that contains cuts there exists a normalised version
of that proof in which all cuts have been removed. The procedure works via a series of local rewrites
of the proof tree and we will see in§6 that reduction inX is based on cut elimination forLK .

15

5 The simply typedλ-calculus and Curry-Howard Isomorphism

I assume the reader is familiar with theλ-calculus [4] and will just briefly recall the definition of lambda
terms andβ-reduction.

Definition 5.1 (LAMBDA TERMS AND β-REDUCTION)
The setΛ of lambda termsis defined by this syntax:

M, N ::= x | λx.M | MN

The reduction relation→β is defined as the compatible closure of this rule:

(λx.M)N →β M[N/x]

This calculus has a notion of type assignment that corresponds to implicational intuitionistic logic
in a natural deduction framework. This correspondence property is called theCurry-Howard Isomor-
phism. Informally, this is the “Terms as Proofs, Types as Propositions” idea.

Definition 5.2 (CURRY-HOWARD ISOMORPHISM)
Let M be a (closed) term, andA a type, thenM is of typeA if and only if A, read as a logical formula,
is provable in the corresponding logic, using a proof whose structure corresponds toM.

This isomorphism expresses the fact that one can associate aterm with a proof such that propositions
become types and proof reductions become term reductions [6, 8]. Logical formulae can be seen as
types and vice versa. The implicationA⇒B corresponds to the typeA→B. Further, the inference rules
of implicative intuitionistic logic are isomorphic to the typing rules of the simply typedλ-calculus:

Definition 5.3 (TYPE ASSIGNMENT FORλ-CALCULUS)
EveryΛ term has a type, derived using the rules below.

(Ax) :
Γ , x:A ⊢λ x : A

(→I) :
Γ , x:A ⊢λ M : B

Γ ⊢λ λx.M : A→B

(→E) :
Γ ⊢λ M : A→B Γ ⊢λ N : A

Γ ⊢λ MN : B

5.1 Reduction Strategies

It is frequently the case that a term in a calculus could be reduced in more than one way. For example,
the lambda term(λx.xx)((λy.y)z) could be reduced in two different ways:

(λx.xx)((λy.y)z) →β (λx.xx)z
(λx.xx)((λy.y)z) →β ((λy.y)z)((λy.y)z)

Lambda terms of the formx or λx.M are calledvalues. If β-reduction only occurs when the ar-
gument is a value then the system obeys theCall-by-Valuereduction strategy (CBV). In contrast, the
second example above demonstrates aCall-by-Namereduction (CBN) in which substitution occurs be-
fore the argument has been reduced to a value. If a term in a calculus will always reach the same normal
form regardless of which strategy is used then that calculusis confluent. It is notable that systems based
on natural deduction are generally confluent whereasX is not. Cut-elimination inLK is not confluent:
non-determinism is a key feature of classical logic.

16

6 X
X is a language designed to exhibit the Curry-Howard Isomorphism with implicative classical logic. It
is based onLK rather than natural deduction, which means that it does not have abstraction (→I) and
application (→E) but instead has four syntactic constructs, correspondingto the (Ax), (⇒R), (⇒L) and
(cut) rules ofLK (→), and a system of reduction based on cut-elimination.

6.1 Syntax

The terms ofX are called “circuits” and they are composed of named “plugs”and “sockets”. If you
have two circuits, designatedP andQ, then you can cut them together, writtenPα̂ † x̂Q, which can be
thought of as wiring the plugs namedα in P to the sockets namedx in Q. Using the notation from the
Principia Mathematica[17] we write x̂ to indicate thatx is bound. So, in the previous example,α is
bound inP andx is bound inQ.

Definition 6.1 (SYNTAX)
The circuits ofX are defined by the following grammar, wherex, y, . . . range over the infinite set of
sockets, andα, β, . . . over the infinite set ofplugs.

P, Q ::= 〈x.α〉 | ŷPα̂ ·β | Pα̂ [y] x̂Q | Pα̂ † x̂Q
capsule export import cut

Diagrammatically, we represent the basic circuits as:

-
x α

-
-
y P -

α -
β P -

α [] x
- Q-

y
P -

α x Q

Definition 6.2 The free socketsandfree plugsin a circuit are:

fs(〈x.α〉) = {x}
fs(x̂Pβ̂·α) = fs(P) \ {x}
fs(Pα̂ [y] x̂Q) = fs(P) ∪{y} ∪(fs(Q) \ {x})
fs(Pα̂ † x̂Q) = fs(P) ∪(fs(Q) \ {x})

fp(〈x.α〉) = {α}
fp(x̂Pβ̂·α) = (fp(P) \ {β}) ∪{α}
fp(Pα̂ [y] x̂Q) = (fp(P) \ {α}) ∪ fp(Q)
fp(Pα̂ † x̂Q) = (fp(P) \ {α}) ∪ fp(Q)

A socketx or plugα which is not free is calledbound, written x ∈ bs(P) andα ∈ bp(P). We will
write x 6∈ fs(P, Q) for x 6∈ fs(P) ∧ x 6∈ fs(Q).

6.2 Reduction

Reduction takes place through the elimination of cuts. It isimportant to know when a socket or a plug
is introduced, i.e. is connectable. Informally, a circuitP introduces a socketx if P is constructed from
subcircuits which do not containx as free socket:x only occurs at the “top level.” This means thatP
is either an import with a middle connector[x] or a capsule whose left part isx. Similarly, a circuit
introduces a plugα if it is an export that “creates”α or a capsule whose right part isα.

Definition 6.3 (INTRODUCTION)

P introducesx : P = 〈x.β〉 or P = Rα̂ [x] ŷQ, with x 6∈ fs(R, Q).

P introducesα : P = 〈y.α〉 or P = x̂Qβ̂·α, with α 6∈ fp(Q).

If a circuit consists of two subcircuits cut together, both of which introduce connectors, then reduc-
tion is simple.

17

Definition 6.4 (LOGICAL REDUCTION)
Assume that the circuits on the left-hand side of the rules introduce the socketx and the plugα:

(cap) : 〈y.α〉α̂ † x̂〈x.β〉 → 〈y.β〉
(exp) : (ŷPβ̂·α)α̂ † x̂〈x.γ〉 → ŷPβ̂·γ
(imp) : 〈y.α〉α̂ † x̂(Pβ̂ [x] ẑQ) → Pβ̂ [y] ẑQ

(exp-imp) : (ŷPβ̂·α)α̂ † x̂(Qγ̂ [x] ẑR) → (Qγ̂ † ŷP)β̂ † ẑR

or Qγ̂ † ŷ(Pβ̂ † ẑR)

Diagrammatically, they look like this:

-

y α
-

-
α x -

x β
- → -

y β
-

-
y P -

β -
α

-
α x -

x γ
- → -

y P -
β -

γ

-

y α
-

-
α x Q -

β [] z
- R-

x → Q -
β [] z

- R-

y

-
y P -

β -
α

-
α x Q -

γ [] z
- R-

x → Q -
γ y P -

β z R

→ Q -
γ y P -

β z R

However, a cut circuit might not introduce its connector. Inthat case the cut must be propagated
through the circuit so that every free instance of that connector is cut with the other circuit. In order to
define the propagation rules, we must extend the syntax with two new operators calledactivatedcuts:

P ::= . . . | Pα̂ † x̂Q | Pα̂ † x̂Q

If two circuits are cut together and they do not both introduce their connectors then reduction ac-
cording to the logical rules given above cannot occur. First, the cut must be activated.

Definition 6.5 (ACTIVATING THE CUTS)

(act-L) : Pα̂ † x̂Q → Pα̂ † x̂Q, if P does not introduceα
(act-R) : Pα̂ † x̂Q → Pα̂ † x̂Q, if Q does not introducex

Notice that both side-conditions might be true, i.e. it might be the case that neither subcircuit intro-
duces its connector. If that is the case then either rule may be used, which constitutes acritical pair
or superpositionfor reduction inX and causes the calculus to be non-confluent. This should not be
surprising given that cut-elimination inLK has the same property. TheLK proof

Γ , A ⊢LK B, ∆
(→R)

Γ ⊢LK A→B, ∆

Γ ⊢LK A, ∆ Γ , B ⊢LK ∆
(→L)

Γ , A→B ⊢LK ∆
(cut)

Γ ⊢LK ∆

reduces to both

Γ ⊢LK A, ∆

Γ , A ⊢LK B, ∆

Γ , B ⊢LK ∆

Γ , A, B ⊢LK ∆

Γ , A ⊢LK ∆

Γ ⊢LK ∆

and

Γ ⊢LK A, ∆

Γ ⊢LK A, B, ∆ Γ , A ⊢LK B, ∆

Γ ⊢LK B, ∆ Γ , B ⊢LK ∆

Γ ⊢LK ∆

18

Other calculi based on classical logic, such as Parigot’sλµ, do not have this property. Even other
non-confluent calculi based on classical logic, such as Herbelin’s λµµ̃-calculus, fail to represent both
possible proof reductions given above.

Once activated, cuts must be propagated through the subcircuits until they either disappear or are
eliminated by a logical rule.

Definition 6.6 (PROPAGATION REDUCTION)

Left propagation

(† d) : 〈y.α〉α̂ † x̂P → 〈y.α〉α̂ † x̂P
(cap†) : 〈y.β〉α̂ † x̂P → 〈y.β〉, β 6= α

(exp-outs†) : (ŷQβ̂·α)α̂ † x̂P → (ŷ(Qα̂ † x̂P)β̂·γ)γ̂ † x̂P,γ fresh
(exp-ins†) : (ŷQβ̂·γ)α̂ † x̂P → ŷ(Qα̂ † x̂P)β̂·γ, γ 6= α

(imp†) : (Qβ̂ [z] ŷR)α̂ † x̂P → (Qα̂ † x̂P)β̂ [z] ŷ(Rα̂ † x̂P)

(cut†) : (Qβ̂ † ŷR)α̂ † x̂P → (Qα̂ † x̂P)β̂ † ŷ(Rα̂ † x̂P)

Right propagation

(d †) : Pα̂ † x̂〈x.β〉 → Pα̂ † x̂〈x.β〉
(†cap) : Pα̂ † x̂〈y.β〉 → 〈y.β〉, y 6= x

(†exp) : Pα̂ † x̂(ŷQβ̂·γ) → ŷ(Pα̂ † x̂Q)β̂·γ
(†imp-outs) : Pα̂ † x̂(Qβ̂ [x] ŷR) → Pα̂ † ẑ((Pα̂ † x̂Q)β̂ [z] ŷ(Pα̂ † x̂R)), z fresh
(†imp-ins) : Pα̂ † x̂(Qβ̂ [z] ŷR) → (Pα̂ † x̂Q)β̂ [z] ŷ(Pα̂ † x̂R),z 6= x

(†cut) : Pα̂ † x̂(Qβ̂ † ŷR) → (Pα̂ † x̂Q)β̂ † ŷ(Pα̂ † x̂R)

The rules(exp-outs†) and(†imp-outs) deserve some attention. In the left-hand side of(exp-outs†)
α may not be introduced, which means thatα could appear free insideQ. The appearance outsideQ
(i.e. after the dot) is dealt with separately by creating a new nameγ. Note that the cut associated with
thatγ is then unactivated. This is because although we know thatγ is introduced, we do not know if
x is introduced or not so the cut may need to be right-activatedto continue. A similar reasoning holds
for x in (†imp-outs) so a new namez is created and the external cut is not active.

6.3 Reduction Strategies

As mentioned above, it is sometimes the case that both activation rules are valid at the same time. This
is similar to the case described in§5.1 in which a lambda term might be reduced in more than one way
(although in theλ-calculus one always ends up at the same normal form regardless of which choice one
makes becauseβ-reduction is confluent, whereas this is not the case inX .) So, analogously, there are
two different reduction strategies inX . Consider a termPα̂ † x̂Q whereP does not introduceα andQ
does not introducex: intuitively, CBV tends to pushQ throughP andCBN tends to do the opposite.

Definition 6.7 (CALL -BY-VALUE AND CALL -BY-NAME)

• If a cut can be activated in two ways, theCBV strategy only allows it to activated via(act-L); we
write P→V Q in that case. We can formulate this by replacing the rule(act-R) by:

(act-R) : Pα̂ † x̂Q → Pα̂ † x̂Q, if P introducesα andQ does not introducex.

• If a cut can be activated in two ways, theCBN strategy only allows it to activated via(act-R); we
write P→N Q in that case. We can formulate this by replacing the rule(act-L) by:

(act-L) : Pα̂ † x̂Q → Pα̂ † x̂Q, if P does not introduceα andQ introducesx.

19

6.4 Typing for X
The typing forX exhibits a Curry-Howard Isomorphism with implicative classical logic in the frame-
work of LK (→) in the same way that the simple typing system for theλ-calculus is isomorphic to
implicative intuitionistic logic in a natural deduction framework.

Definition 6.8 (TYPING FORX)
A context of socketsΓ is a mapping from sockets to types, denoted as a finite set of statements of the
form x:A, such that the subjects of the statements (e.g.x) are distinct. We writeΓ , x:A for the context
defined by:

Γ , x:A = Γ ∪ {x:A}, if Γ is not defined onx
= Γ , otherwise

(Notice that the second case implies thatx:A ∈ Γ .) So, when writing a context asΓ , x:A, this implies
that x:A ∈ Γ , or Γ is not defined onx. When we writeΓ1, Γ2 we mean the union ofΓ1 andΓ2 whenΓ1

andΓ2 are coherent (ifΓ1 containsx:A1 andΓ2 containsx:A2 thenA1 = A2).
Contexts ofplugs∆ are defined in a similar way.
Type judgements are expressed via a ternary relationP ··· Γ ⊢ ∆, whereP is a circuit whose free

connectors can be found inΓ and∆ with their types. We say thatP is thewitnessof this judgement.
Type assignment forX is defined by the following sequent calculus:

(cap) : 〈x.α〉 ··· Γ , x:A ⊢α:A, ∆

(imp) :
P ··· Γ ⊢ α:A, ∆ Q ··· Γ , x:B ⊢ ∆

Pα̂ [y] x̂Q ··· Γ , y:A→B ⊢ ∆

(exp) :
P ··· Γ , x:A ⊢ α:B, ∆

x̂Pα̂ ·β ··· Γ ⊢ β:A→B, ∆

(cut) :
P ··· Γ ⊢ α:A, ∆ Q ··· Γ , x:A ⊢ ∆

Pα̂ † x̂Q ··· Γ ⊢ ∆

We writeP ··· Γ ⊢ ∆ if there exists a derivation that has this judgement in the bottom line. There is no
notion of type forP itself, instead the derivable statement shows howP is connectable.

20

7 Parigot’s λµ-calculus

Parigot [13] extended theλ-calculus in such a way that its typing rules would correspond to classical
logic. However, he retained the natural deduction framework. In order to cope with the possibility of
multiple alternative conclusions, he introduced the notion of activation. This allows only one conclu-
sion to be theactiveconclusion at any one time, as in normal natural deduction, but allows multiple
alternativepassiveconclusions to exist as well. The active conclusion is separated from the other con-
clusions in Parigot’s sequents by ‘|’ which is to be understood as the logical connective∨ (just as
commas on the right-hand side of a sequent are usually understood.) The rationale for this system
becomes clear when we extend the rules of natural deduction to deal with classical logic.

As mentioned in§3, classical logic can be thought of as intuitionistic logicwith the addition of a rule
expressing the law of excluded middle. However, rather thanthe law of excluded middle, it is possible
to add a rule for double negation elimination or proof by contradiction instead and get the same result.
Given one of those three rules, the other two become admissible. (This is not quite true, Ariola and
Herbelin [1] distinguish between “weak classical”, “minimal classical” and “full classical” axioms and
the logics that result from their addition to intuitionistic logic. However, for our purposes here we do
not need to make such distinctions.)

Proof by contradiction is a rule which allows you to stateA if you can prove that the negation of
A (¬A) implies contradiction (⊥). In intuitionistic logic, if you can prove that a proposition implies
contradiction that only allows you to state the negation of the proposition (in fact, this is the definition
of negation:¬A = A→⊥.) Thus if¬A→⊥ you may state¬¬A but you may not immediately state
A. Double negation elimination is the rule that allows you to stateA if you can prove¬¬A.

Parigot chose to add a rule for proof by contradiction:

(PC) :
Γ , A⇒⊥ ⊢ ⊥

Γ ⊢ A

Assumptions can now be discharged either through the(⇒I)-rule or, if they are of the form(A⇒⊥),
through the above(PC)-rule. However, in classical logic,(A⇒⊥)⇒B is logically equivalent to
A ∨ B. So a single conclusion sequent such as

Γ , A1 ⇒⊥, A2 ⇒⊥, . . . , An ⇒⊥ ⊢ B

is logically equivalent to the multiple conclusion sequent

Γ ⊢ B | A1, A2, . . . , An

Thus proof by contradiction becomes

(PC) :
Γ ⊢ ⊥ | A, ∆

Γ ⊢ A | ∆

which exhibits the neutrality of⊥ for disjunction.
However, when we assumedA⇒⊥, we may have wanted to use it not for proof by contradiction

but actually as an implication as such:

Γ , A⇒⊥ ⊢ A⇒⊥ Γ , A⇒⊥ ⊢ A

Γ , A⇒⊥ ⊢ ⊥

21

And so we also need this rule:

(⊥I) :
Γ ⊢ A | A, ∆

Γ ⊢ ⊥ | A, ∆

where again the neutrality of⊥ for disjunction is exhibited. Alternatively, it is clear that if we have a
rule forPC, which requires the existence of⊥, then we also need a rule for⊥ introduction. Bearing in
mind that the sequentΓ ⊢ A | A, ∆ is equivalent to the single-conclusion sequentΓ ,¬∆,¬A ⊢ A, the
above rule is the obvious choice.

Parigot extended the typing system ofλ-calculus to include the pseudo-type⊥ and added syntactic
constructs to act as witnesses to the two new rules:(PC) and(⊥I). He called the result theλµ-calculus
as it uses two disjoint sets of variables: as before, Roman letters designateλ variables, but now there
are also Greek letters designatingµ variables.

Definition 7.1 (TERMS OFλµ)

M, N ::= x | λx.M | MN | [α]M | µα.M

Definition 7.2 (TYPING RULES FORλµ)
Type assignment forλµ is defined by the following natural deduction system. There is anactive
conclusion, labelled by a term of his calculus, and the alternative conclusions are labelled by the set of
Greek variablesα, β, γ, . . .

(Ax) : Γ , x:A ⊢λµ x:A | ∆ (→I) :
Γ , x:A ⊢λµ M:B | ∆

Γ ⊢λµ λx.M:A→B | ∆

(→E) :
Γ ⊢λµ M:A→B | ∆ Γ ⊢λµ N:A | ∆

Γ ⊢λµ MN:B | ∆

(⊥I) :
Γ ⊢λµ M:A | ∆

Γ ⊢λµ [α]M:⊥ | α:A, ∆
(PC) :

Γ ⊢λµ M:⊥ | α:A, ∆

Γ ⊢λµ µα.M:A | ∆

We can think of[α]M as storing the type ofM among the alternative conclusions by giving it a
name: the set of Greek variables is called the set ofnamevariables and the rule corresponding to⊥I is
callednaming. Also,µα.M bindsα in M and the rule corresponding toPC is calledµ-abstraction.

Note that⊥ is not a real type: no term may have a type of⊥ except as a result of the(⊥I) rule
above. Some authors emphasise this point by not including[α]M in the category of terms but instead
call such expressions “commands” or just “named terms”.

Definition 7.3 (REDUCTION IN λµ)
In addition to the logicalβ-reduction from theλ-calculus,λµ also has structuralµ-reduction and two
simplification rules.

logical (β) : (λx.M)N → M[N/x]
structural (µ) : (µα.M)N → µγ.M[N·γ/α]

renaming : µα.[β](µγ.[δ]M) → µα.[δ]M[β/γ]
erasing: µα.[α]M → M if α does not occur inM.

The notationM[N·γ/α] denotes therecursivesubstitution of every named term[α]M′ found within
M by [γ](M′N) (γ is a fresh variable.) This is an unusual reduction step that substitutes terms for
terms rather than the more usual terms for variables. Inβ-reduction we search through the body of the
abstraction (M) for free occurrences of the bound variable (x) and each time we find one we replace

22

it with the argument (N). In µ-reduction we recursively search through the body of the abstraction
(M) and each time we find a term named by the bound name variable ([α]M′) we replace it with the
application of that term to the argument (M′N) named with a fresh name variable, which we bind at
the outermost level.

It is not obvious that such a strange rule should do what we want, so I will provide a somewhat
contrived example to show how it works. Consider the following natural deduction proof:

Γ ⊢ A→B | A→B, ∆

Γ ⊢ ⊥ | A→B, ∆

Γ ⊢ A→B | A→B, ∆

Γ ⊢ ⊥ | A→B, ∆

Γ ⊢ A→B | ∆

Γ , A ⊢ A→B | ∆ Γ , A ⊢ A | ∆

Γ , A ⊢ B | ∆

Clearly there is plenty of opportunity for reduction. Here is the proof inhabited withλµ terms:

Γ ⊢λµ x:A→B | α:A→B, β:A→B, ∆

Γ ⊢λµ [α]x:⊥ | α:A→B, β:A→B, ∆

Γ ⊢λµ µβ.[α]x:A→B | α:A→B, ∆

Γ ⊢λµ [α]µβ.[α]x:⊥ | α:A→B, ∆

Γ ⊢λµ µα.[α]µβ.[α]x:A→B | ∆

Γ , y:A ⊢λµ µα.[α]µβ.[α]x:A→B | ∆ Γ , y: A ⊢λµ y:A | ∆

Γ , y:A ⊢λµ (µα.[α]µβ.[α]x)y:B | ∆

Now we can demonstrate the recursive nature of the structural µ-reduction:

(µα.[α]µβ.[α]x)y → µγ.[γ]((µβ.[γ]xy)y) (structural)
→ µγ.[γ](µδ.[γ]xy) (structural)
→ µγ.[γ]xy (renaming)
→ xy (erasing)

Which corresponds to the much more sensible proof:

Γ ⊢ A→B | ∆

Γ , A ⊢ A→B | ∆ Γ , A ⊢ A | ∆

Γ , A ⊢ B | ∆

23

8 Bierman’s Abstract Machine

Bierman has shown [5] thatλµ can be interpreted as “a typedλ-calculus which is able to save and
restore the runtime environment.” In order to demonstrate this we must formally introduce the idea of
anevaluation contextthat was mentioned in§2.

8.1 Evaluation Contexts

We writeE[•] to signify an evaluation context in which• is the ‘hole’ - the part of the calculation for
which we are waiting. The fundamental property of evaluation contexts is this:

Lemma 8.1 Every closed term,M, is either a value,V, or is uniquely of the formE[R] whereE[•] is
an evaluation context andR is a redex.

How we constitute a system of evaluation contexts depends onthe reduction strategy that we want to
use. Later, when we translate betweenX andλµ, it will become necessary to pick a single reduction
strategy. This is becauseX is symmetric and not confluent whereasλµ is asymmetric and confluent, so
λµ cannot completely represent reduction inX . However, if we restrict ourselves to a single reduction
strategy, eitherCBV or CBN, then reduction inX will be confluent and we can construct consistent
and complete translations. Which system we choose is largely arbitrary but I have chosen to useCBN.
The system of evaluation contexts that Bierman presents in his paper is for aCBV system so choosing
CBN allows me to do some more original work.

Definition 8.2 (SYNTACTIC CLASSES FORCBN)

Terms: M, N ::= x | λx.M | M N | [α]M | µα.M
Values: V ::= x | λx.M

Evaluation Contexts: E ::= • | EM
Redexes: R ::= (λx.M)N | [α]M | µα.M

Contrast this withCBV, in which an evaluation context may also take the formVE but a redex must
take the formVV (or aµ-abstraction or naming.) As expected, in theCBV variant a reduction can only
occur when the argument is a value but this restriction does not apply inCBN. Equally expectedly, in
the CBN variant the redex always appears on the left, whereas inCBV it can appear to the right of a
value. For example,[λx.M •] is a valid context inCBV but not inCBN. In CBN the leftmost redex is
always reduced first.

8.2 The Machine

We represent the state of the abstract machine by a pair: the current evaluation context and a function.
The function maps name variables to evaluation contexts. IfΣ is such a function, thenΣ⊎{α 7→ E[•]}
denotes that function extended with the mappingα 7→ E[•].

The single-step reduction rules for our machine are as follows:

〈E[(λx.M)N], Σ〉 ⇒ 〈E[M[N/x]], Σ〉
〈E[µα.M], Σ〉 ⇒ 〈M, Σ ⊎ {α 7→ E[•]}〉

〈E[[α]M], Σ ⊎ {α 7→ E′[•]}〉 ⇒ 〈E′[M], Σ ⊎ {α 7→ E′[•]}〉
The first rule is just standard logicalβ-reduction from theλ-calculus. In the second rule, we see that

µ-abstraction causes a pointer to the current evaluation context to be saved; then evaluation continues
inside the body of theµ-abstraction. In the third rule, naming causes the current evaluation context to
be discarded and replaced by a previously referenced context. Intuitively, we can see that this captures
the recursive nature of structuralµ-reduction in theλµ calculus.

24

Here is theλµ term that was used as an example in§7 being run on the machine:

〈(µα.[α]µβ.[α]x)y, Σ〉
⇒ 〈[α]µβ.[α]x, Σ ⊎ {α 7→ [•y]}〉
⇒ 〈(µβ.[α]x)y, Σ ⊎ {α 7→ [•y]}〉
⇒ 〈[α]x, Σ ⊎ {α 7→ [•y], β 7→ [•y]}〉
⇒ 〈xy, Σ ⊎ {α 7→ [•y], β 7→ [•y]}〉

If [α]N occurs withinµα.M, then theµ-abstraction looks like atry/catchblock, as described in§2,
and the naming looks like throwing an exception.

In order to investigate continuations inX then, it makes sense to look at the relationship betweenX
andλµ.

25

9 From λµ to X
We have seen thatµ-abstraction and naming inλµ correspond to saving and restoring continuations.
So now we would like to know how the equivalent operations arerepresented inX .

We do not have the pseudo-type⊥ in our typing system forX so we cannot directly represent a single
µ-abstraction or naming operation. However, if we extend thesyntax ofX to represent negation, we
can use a proof containing double negation elimination to represent the process of naming immediately
followed by µ-abstraction. The rationale for this will become clear whenwe construct the sequent
proof below.

First, we note that the negation of an assumption on the left-hand side of a sequent moves it to the
right-hand side to be a possible conclusion. Similarly, thenegation of a conclusion moves it to the
left-hand side:

Γ , A ⊢ ∆

Γ ⊢ ¬A, ∆

Γ ⊢ A, ∆

Γ ,¬A ⊢ ∆

Next, we note that in our typing forX , the introduction of a socket witnesses the creation of an
assumption and the introduction of a plug witnesses the creation of a conclusion. Similarly, the elimi-
nation of assumptions and conclusions corresponds to the binding of sockets and plugs. So, the natural
representation of negation inX would involve the binding of a plug and the introduction of a socket or
vice versa.

Thus we extend the syntax ofX to include the following two constructs:

P ::= . . . | x·Pα̂ | x̂P·α
Which we type like this:

P ··· Γ ⊢ α:A, ∆

x·Pα̂ ··· Γ , x:¬A ⊢ ∆

P ··· Γ , x:A ⊢ ∆

x̂P·α ··· Γ ⊢ α:¬A, ∆

And reduce like this:

(ŷP·β)β̂ † x̂(x·Qα̂) → Qα̂ † ŷP

We can now interpret naming andµ-abstraction by constructing a witness for double negationelim-
ination. We take an assumptionA and negate it twice to produce¬¬A then we eliminate the double
negation. This is expressed inLK sequents like so:

Γ ⊢ A, ∆

Γ ,¬A ⊢ ∆

Γ ⊢ ¬¬A, ∆

Γ , A ⊢ A, ∆

Γ ⊢ ¬A, A, ∆

Γ ,¬¬A ⊢ A, ∆

Γ ⊢ A, ∆

Compare the above with the sequents for(PC) and(⊥I) given in§7.

26

This gives us the following witnesses:

P ··· Γ ⊢α:A, ∆

x·Pα̂ ··· Γ , x:¬A ⊢ ∆

x̂(x·Pα̂) ·δ ··· Γ ⊢ δ:¬¬A, ∆

〈y.β〉 ··· Γ , y:A ⊢ β:A, ∆

ŷ〈y.β〉·γ ··· Γ ⊢ γ:¬A, β:A, ∆

z· (ŷ〈y.β〉·γ)γ̂ ··· Γ , z:¬¬A ⊢ β:A, ∆

(x̂(x·Pα̂) ·δ)δ̂ † ẑ(z· (ŷ〈y.β〉·γ)γ̂) ··· Γ ⊢ β:A, ∆

→ (ŷ〈y.β〉·γ)γ̂ † x̂(x·Pα̂) ··· Γ ⊢ β:A, ∆

→ Pα̂ † ŷ〈y.β〉 ··· Γ ⊢ β:A, ∆

So we see that naming thenµ-abstraction inλµ, which causes a pointer to the current continuation
to be saved on Bierman’s machine, corresponds to a renaming inX . (Note that when the term is run on
Bierman’s machine theµ-abstraction will be reduced before the naming: when I say “naming followed
by µ-abstraction” I am referring to the order of their appearance in the construction of the term.) Later
(in §11) we will see that a reference to the current continuation is saved when a plug is bound, so it
makes sense to see here that naming thenµ-abstraction corresponds to the binding of a plug and its
replacement by a free plug of a different name. We could in fact make this more explicit by introducing
a new syntactic construct:

P ::= . . . | Pα̂ ·β
But since a renaming does the same thing (and avoids the need to create new propagation rules to go

with the new construct) there is little point in doing so. Note that we do not need to retain our extension
of X that represents negation, that merely provides a rationalefor the above representation of saving a
continuation.

27

10 FromX to λµ

We have a translation fromX into λµ [15] but it uses the version ofλµ in whichnamingandµ-abstraction
are combined in a single operation. As Bierman’s abstract machine forλµ [5] treats those operations
separately, we must use a translation fromX into a version ofλµ that keeps them separate. The trans-
lation of terms is the same but the proofs of its consistency are no longer valid as we are translating
into a version ofλµ with a different type system (a system containing the pseudo-type⊥.) The proof
that reduction inX is preserved in the target calculus is the same in both cases (since we are using
the same translation and both versions ofλµ reduce in the same way) but a new proof that types are
preserved is needed (since the different versions ofλµ have different typing systems.) As before, we
restrict ourselves to theCBN subsystem.

10.1 The Translation

The translation consists of two stages. First we use a doublenegation translation (see§3) then we
recover the types. I know of no theoretical reason why such a two-stage translation should be necessary
(since we are translating from a classical logic system to another classical logic system) but in practice it
seems to be. The fact thatλµ is based on natural deduction seems to require a translationto intuitionistic
logic then a recovery back to classical logic. As we are usinga double negation translation, we need
some way to represent negation. We cannot use⊥ in an implication so we extend the typing system to
include a constantΩ.

Definition 10.1 (NEGATION)
Let Ω be a type constant. Then ifT is a type

¬T =
∆

T→Ω

Definition 10.2 (TRANSLATION OF TERMS)
The notationµ!.M is shorthand forµη.M whereη is a fresh name variable wrtM of typeΩ.

⌈⌈〈x.α〉⌋⌋N
µ′ =

∆
λv.(µ!.([α](λ f . f v)))

⌈⌈Pβ̂ [x] ŷQ⌋⌋N
µ′ =

∆
λv.µ!.[ω]λy.µ!.⌈⌈Q⌋⌋N

µ v µβ.⌈⌈P⌋⌋N
µ

⌈⌈〈x.α〉⌋⌋N
µ =

∆
[ω]x ⌈⌈〈x.α〉⌋⌋N

µ′

⌈⌈ŷPβ̂·α⌋⌋N
µ =

∆
[α]λ f . f (λy.µβ.⌈⌈P⌋⌋N

µ)
⌈⌈Pβ̂ [x] ŷQ⌋⌋N

µ =
∆

[ω]x ⌈⌈Pβ̂ [x] ŷQ⌋⌋N
µ′

⌈⌈Pα̂ † x̂Q⌋⌋N
µ =

∆ ⌈⌈Pα̂ † x̂Q⌋⌋N
µ =

∆
[ω]λx.µ!.⌈⌈Q⌋⌋N

µ
µα.⌈⌈P⌋⌋N

µ

⌈⌈Pα̂ † x̂Q⌋⌋N
µ =

∆
[ω]µα.⌈⌈P⌋⌋N

µ ⌈⌈Q⌋⌋N
µ′

Definition 10.3 (TRANSLATION OF TYPES)
TheCBN interpretation of a typeT is defined by

⌈⌈T⌋⌋N
µ =

∆ ¬¬⌈⌈T⌋⌋N
µ′

If X is a type variable,⌈⌈·⌋⌋N
µ′ is defined inductively by

⌈⌈X⌋⌋N
µ′ =

∆
X

⌈⌈A→B⌋⌋N
µ′ =

∆ ⌈⌈A⌋⌋N
µ→⌈⌈B⌋⌋N

µ

Note that we duplicate notation: we have two translation functions, one for terms and one for types,
both denoted by⌈⌈·⌋⌋N

µ. Similarly, we have two functions both denoted by⌈⌈·⌋⌋N
µ′. This cannot lead to

confusion as it is clear from the context which function is intended and this helps to link the two stages
of the translation of terms with the two stages of the translation of types.

28

10.2 Proof of Type Preservation

Lemma 10.4(WEAKENING)
The following rule is admissible:

(W) :
Γ ⊢λµ M:A | ∆

Γ ′ ⊢λµ M:A | ∆′

for anyΓ ′ ⊇ Γ and∆′ ⊇ ∆.

Weakening is used frequently in the following proof.

Recall thatµ!.M is shorthand forµη.M whereη is a fresh name variable wrtM of type Ω. Thus
some name variables in the proof below may appear to have duplicate names if the shorthand! is used
more than once in the same derivation. However, this is not a problem as in each instance it represents
the binding of a fresh variable, so we know that the variable does not appear anywhere else in the term
andα-conversion can be used if necessary.

Thus the following rule is admissible:

(!) :
Γ ⊢λµ M:⊥ | ∆

Γ ⊢λµ µ!.M:Ω | ∆

Lemma 10.5 IfM:A thenλ f . f M:¬¬A
Proof:

Γ , f :A→Ω ⊢λµ f :A→Ω | ∆

Γ ⊢λµ M:A | ∆
(W)

Γ , f :A→Ω ⊢λµ M:A | ∆

Γ , f :A→Ω ⊢λµ f M:Ω | ∆

Γ ⊢λµ λ f . f M:(A→Ω)→Ω | ∆

Thus the following rule is admissible:

(∗) :
Γ ⊢λµ M:A | ∆

Γ ⊢λµ λ f . f M:¬¬A | ∆

Theorem 10.6 If P ··· Γ ⊢ ∆, then⌈⌈Γ⌋⌋N
µ ⊢λµ ⌈⌈P⌋⌋N

µ
:⊥ | ω:Ω,⌈⌈∆⌋⌋N

µ.
Proof: By induction on the structure of derivations.
Recall that⌈⌈T⌋⌋N

µ =
∆

(⌈⌈T⌋⌋N
µ′→Ω)→Ω.

(cap) : Then〈x.α〉 ··· Γ , x:A ⊢ α:A, ∆.

⌈⌈Γ⌋⌋N
µ
, x:⌈⌈A⌋⌋N

µ ⊢λµ x:⌈⌈A⌋⌋N
µ | ⌈⌈∆⌋⌋N

µ

⌈⌈Γ⌋⌋N
µ
, v:⌈⌈A⌋⌋N

µ′ ⊢λµ v:⌈⌈A⌋⌋N
µ′ | ω:Ω,⌈⌈∆⌋⌋N

µ

(∗)⌈⌈Γ⌋⌋N
µ
, v:⌈⌈A⌋⌋N

µ′ ⊢λµ λ f . f v:⌈⌈A⌋⌋N
µ | ω:Ω,⌈⌈∆⌋⌋N

µ

⌈⌈Γ⌋⌋N
µ
, v:⌈⌈A⌋⌋N

µ′ ⊢λµ [α](λ f . f v):⊥ | α:⌈⌈A⌋⌋N
µ
,ω:Ω, ⌈⌈∆⌋⌋N

µ

(!)⌈⌈Γ⌋⌋N
µ
, v:⌈⌈A⌋⌋N

µ′ ⊢λµ µ!.[α](λ f . f v):Ω | α:⌈⌈A⌋⌋N
µ
,ω:Ω, ⌈⌈∆⌋⌋N

µ

⌈⌈Γ⌋⌋N
µ ⊢λµ λv.µ!.[α](λ f . f v):(⌈⌈A⌋⌋N

µ′→Ω) | α:⌈⌈A⌋⌋N
µ
,ω:Ω, ⌈⌈∆⌋⌋N

µ

⌈⌈Γ⌋⌋N
µ
, x:⌈⌈A⌋⌋N

µ ⊢λµ xλv.µ!.[α](λ f . f v):Ω | α:⌈⌈A⌋⌋N
µ
,ω:Ω, ⌈⌈∆⌋⌋N

µ

⌈⌈Γ⌋⌋N
µ
, x:⌈⌈A⌋⌋N

µ ⊢λµ [ω]xλv.µ!.[α](λ f . f v):⊥ | α:⌈⌈A⌋⌋N
µ
,ω:Ω, ⌈⌈∆⌋⌋N

µ

29

(exp) : Thenx̂Pα̂ ·β ··· Γ ⊢ β:A→B, ∆, with a subderivation forP ··· Γ , x:A ⊢ α:B, ∆.

By Induction Hypothesis

⌈⌈Γ⌋⌋N
µ
, x:⌈⌈A⌋⌋N

µ ⊢λµ ⌈⌈P⌋⌋N
µ
:⊥ | α:⌈⌈B⌋⌋N

µ
,ω:Ω, ⌈⌈∆⌋⌋N

µ

⌈⌈Γ⌋⌋N
µ
, x:⌈⌈A⌋⌋N

µ ⊢λµ µα.⌈⌈P⌋⌋N
µ
:⌈⌈B⌋⌋N

µ | ω:Ω,⌈⌈∆⌋⌋N
µ

⌈⌈Γ⌋⌋N
µ ⊢λµ λx.µα.⌈⌈P⌋⌋N

µ
:⌈⌈A⌋⌋N

µ→⌈⌈B⌋⌋N
µ | ω:Ω,⌈⌈∆⌋⌋N

µ

(∗)⌈⌈Γ⌋⌋N
µ ⊢λµ λ f . f (λx.µα.⌈⌈P⌋⌋N

µ):⌈⌈A→B⌋⌋N
µ | ω:Ω,⌈⌈∆⌋⌋N

µ

⌈⌈Γ⌋⌋N
µ ⊢λµ [β]λ f . f (λx.µα.⌈⌈P⌋⌋N

µ):⊥ | β:⌈⌈A→B⌋⌋N
µ
,ω:Ω, ⌈⌈∆⌋⌋N

µ

(imp) : ThenPα̂ [y] x̂Q ··· Γ , y:A→B ⊢ ∆, with subderivations for bothP ··· Γ ⊢α:A, ∆ andQ ··· Γ , x:B ⊢∆.

⌈⌈Γ⌋⌋N
µ
, y:⌈⌈A→B⌋⌋N

µ ⊢λµ y:⌈⌈A→B⌋⌋N
µ | ⌈⌈∆⌋⌋N

µ

By Induction Hypothesis

⌈⌈Γ⌋⌋N
µ
, x:⌈⌈B⌋⌋N

µ ⊢λµ ⌈⌈Q⌋⌋N
µ
:⊥ | ω:Ω,⌈⌈∆⌋⌋N

µ

(!)⌈⌈Γ⌋⌋N
µ
, x:⌈⌈B⌋⌋N

µ ⊢λµ µ!.⌈⌈Q⌋⌋N
µ
:Ω | ω:Ω,⌈⌈∆⌋⌋N

µ

⌈⌈Γ⌋⌋N
µ ⊢λµ λx.µ!.⌈⌈Q⌋⌋N

µ
:⌈⌈B⌋⌋N

µ→Ω | ω:Ω,⌈⌈∆⌋⌋N
µ

By Induction Hypothesis

⌈⌈Γ⌋⌋N
µ ⊢λµ ⌈⌈P⌋⌋N

µ
:⊥ | α:⌈⌈A⌋⌋N

µ
,ω:Ω, ⌈⌈∆⌋⌋N

µ

⌈⌈Γ⌋⌋N
µ ⊢λµ µα.⌈⌈P⌋⌋N

µ
:⌈⌈A⌋⌋N

µ | ω:Ω,⌈⌈∆⌋⌋N
µ

⌈⌈Γ⌋⌋N
µ
, v:⌈⌈A⌋⌋N

µ→⌈⌈B⌋⌋N
µ ⊢λµ vµα.⌈⌈P⌋⌋N

µ
:⌈⌈B⌋⌋N

µ | ω:Ω,⌈⌈∆⌋⌋N
µ

⌈⌈Γ⌋⌋N
µ
, v:⌈⌈A⌋⌋N

µ→⌈⌈B⌋⌋N
µ ⊢λµ λx.µ!.⌈⌈Q⌋⌋N

µ
vµα.⌈⌈P⌋⌋N

µ
:Ω | ω:Ω,⌈⌈∆⌋⌋N

µ

⌈⌈Γ⌋⌋N
µ
, v:⌈⌈A⌋⌋N

µ→⌈⌈B⌋⌋N
µ ⊢λµ [ω]λx.µ!.⌈⌈Q⌋⌋N

µ
vµα.⌈⌈P⌋⌋N

µ
:⊥ | ω:Ω,⌈⌈∆⌋⌋N

µ

(!)⌈⌈Γ⌋⌋N
µ
, v:⌈⌈A⌋⌋N

µ→⌈⌈B⌋⌋N
µ ⊢λµ µ!.[ω]λx.µ!.⌈⌈Q⌋⌋N

µ
vµα.⌈⌈P⌋⌋N

µ
:Ω | ω:Ω,⌈⌈∆⌋⌋N

µ

⌈⌈Γ⌋⌋N
µ ⊢λµ λv.µ!.[ω]λx.µ!.⌈⌈Q⌋⌋N

µ
vµα.⌈⌈P⌋⌋N

µ
:(⌈⌈A⌋⌋N

µ→⌈⌈B⌋⌋N
µ)→Ω | ω:Ω,⌈⌈∆⌋⌋N

µ

⌈⌈Γ⌋⌋N
µ
, y:⌈⌈A→B⌋⌋N

µ ⊢λµ yλv.µ!.[ω]λx.µ!.⌈⌈Q⌋⌋N
µ
vµα.⌈⌈P⌋⌋N

µ
:Ω | ω:Ω,⌈⌈∆⌋⌋N

µ

⌈⌈Γ⌋⌋N
µ
, y:⌈⌈A→B⌋⌋N

µ ⊢λµ [ω]yλv.µ!.[ω]λx.µ!.⌈⌈Q⌋⌋N
µ
vµα.⌈⌈P⌋⌋N

µ
:⊥ | ω:Ω,⌈⌈∆⌋⌋N

µ

(cut) : ThenPα̂ † x̂Q ··· Γ ⊢ ∆, with subderivations for bothP ··· Γ ⊢ α:A, ∆ andQ ··· Γ , x:A ⊢ ∆.
There are two cases:

(inactive or right cut) :

By Induction Hypothesis

⌈⌈Γ⌋⌋N
µ
, x:⌈⌈A⌋⌋N

µ ⊢λµ ⌈⌈Q⌋⌋N
µ
:⊥ | ω:Ω,⌈⌈∆⌋⌋N

µ

(!)⌈⌈Γ⌋⌋N
µ
, x:⌈⌈A⌋⌋N

µ ⊢λµ µ!.⌈⌈Q⌋⌋N
µ
:Ω | ω:Ω,⌈⌈∆⌋⌋N

µ

⌈⌈Γ⌋⌋N
µ ⊢λµ λx.µ!.⌈⌈Q⌋⌋N

µ
:⌈⌈A⌋⌋N

µ→Ω | ω:Ω,⌈⌈∆⌋⌋N
µ

By Induction Hypothesis

⌈⌈Γ⌋⌋N
µ ⊢λµ ⌈⌈P⌋⌋N

µ
:⊥ | α:⌈⌈A⌋⌋N

µ
,ω:Ω, ⌈⌈∆⌋⌋N

µ

⌈⌈Γ⌋⌋N
µ ⊢λµ µα.⌈⌈P⌋⌋N

µ
:⌈⌈A⌋⌋N

µ | ω:Ω,⌈⌈∆⌋⌋N
µ

⌈⌈Γ⌋⌋N
µ ⊢λµ λx.µ!.⌈⌈Q⌋⌋N

µ
µα.⌈⌈P⌋⌋N

µ
:Ω | ω:Ω,⌈⌈∆⌋⌋N

µ

⌈⌈Γ⌋⌋N
µ ⊢λµ [ω]λx.µ!.⌈⌈Q⌋⌋N

µ
µα.⌈⌈P⌋⌋N

µ
:⊥ | ω:Ω,⌈⌈∆⌋⌋N

µ

30

(left cut) :

Lemma 10.7 IfQ ··· Γ , x:A ⊢∆ andQ introducesx then⌈⌈Γ⌋⌋N
µ ⊢λµ ⌈⌈Q⌋⌋N

µ′
:¬⌈⌈A⌋⌋N

µ′ | ω:Ω,⌈⌈∆⌋⌋N
µ.

Proof: If Q introducesx thenQ is either acapsuleor animport.
〈x.β〉 SoQ ··· Γ , x:A ⊢ β:A,∆ and⌈⌈Q⌋⌋N

µ′ =
∆

λv.µ!.[β](λ f . f v)

⌈⌈Γ⌋⌋N
µ
, v:⌈⌈A⌋⌋N

µ′ ⊢λµ v:⌈⌈A⌋⌋N
µ′ | ⌈⌈∆⌋⌋N

µ

(∗)⌈⌈Γ⌋⌋N
µ
, v:⌈⌈A⌋⌋N

µ′ ⊢λµ λ f . f v:⌈⌈A⌋⌋N
µ | ⌈⌈∆⌋⌋N

µ

⌈⌈Γ⌋⌋N
µ
, v:⌈⌈A⌋⌋N

µ′ ⊢λµ [β]λ f . f v:⊥ | ⌈⌈∆⌋⌋N
µ

(!)⌈⌈Γ⌋⌋N
µ
, v:⌈⌈A⌋⌋N

µ′ ⊢λµ µ!.[β]λ f . f v:Ω | ⌈⌈∆⌋⌋N
µ

⌈⌈Γ⌋⌋N
µ ⊢λµ λv.µ!.[β]λ f . f v:⌈⌈A⌋⌋N

µ′→Ω | β:⌈⌈A⌋⌋N
µ
,⌈⌈∆⌋⌋N

µ

Rβ̂ [x] ŷS SoQ ··· Γ , x:B→C ⊢ ∆ and⌈⌈Q⌋⌋N
µ′ =

∆
λv.µ!.[ω]λy.µ!.⌈⌈S⌋⌋N

µ
vµβ.⌈⌈R⌋⌋N

µ

By Induction Hypothesis

⌈⌈Γ⌋⌋N
µ
, y:⌈⌈C⌋⌋N

µ ⊢λµ ⌈⌈S⌋⌋N
µ
:⊥ | ω:Ω,⌈⌈∆⌋⌋N

µ

(!)⌈⌈Γ⌋⌋N
µ
, y:⌈⌈C⌋⌋N

µ ⊢λµ µ!.⌈⌈S⌋⌋N
µ
:Ω | ω:Ω,⌈⌈∆⌋⌋N

µ

⌈⌈Γ⌋⌋N
µ ⊢λµ λy.µ!.⌈⌈S⌋⌋N

µ
:(⌈⌈C⌋⌋N

µ→Ω) | ω:Ω,⌈⌈∆⌋⌋N
µ

By Induction Hypothesis

⌈⌈Γ⌋⌋N
µ ⊢λµ ⌈⌈R⌋⌋N

µ
:⊥ | β:⌈⌈B⌋⌋N

µ
,ω:Ω, ⌈⌈∆⌋⌋N

µ

⌈⌈Γ⌋⌋N
µ ⊢λµ µβ.⌈⌈R⌋⌋N

µ
:⌈⌈B⌋⌋N

µ | ω:Ω,⌈⌈∆⌋⌋N
µ

⌈⌈Γ⌋⌋N
µ
, v:⌈⌈B⌋⌋N

µ→⌈⌈C⌋⌋N
µ ⊢λµ vµβ.⌈⌈R⌋⌋N

µ
:⌈⌈C⌋⌋N

µ | ω:Ω,⌈⌈∆⌋⌋N
µ

⌈⌈Γ⌋⌋N
µ
, v:⌈⌈B⌋⌋N

µ→⌈⌈C⌋⌋N
µ ⊢λµ λy.µ!.⌈⌈S⌋⌋N

µ
vµβ.⌈⌈R⌋⌋N

µ
:Ω | ω:Ω,⌈⌈∆⌋⌋N

µ

⌈⌈Γ⌋⌋N
µ
, v:⌈⌈B⌋⌋N

µ→⌈⌈C⌋⌋N
µ ⊢λµ [ω]λy.µ!.⌈⌈S⌋⌋N

µvµβ.⌈⌈R⌋⌋N
µ
:⊥ | ω:Ω,⌈⌈∆⌋⌋N

µ

(!)⌈⌈Γ⌋⌋N
µ
, v:⌈⌈B⌋⌋N

µ→⌈⌈C⌋⌋N
µ ⊢λµ µ!.[ω]λy.µ!.⌈⌈S⌋⌋N

µvµβ.⌈⌈R⌋⌋N
µ
:Ω | ω:Ω,⌈⌈∆⌋⌋N

µ

⌈⌈Γ⌋⌋N
µ ⊢λµ λv.µ!.[ω]λy.µ!.⌈⌈S⌋⌋N

µvµβ.⌈⌈R⌋⌋N
µ
:(⌈⌈B⌋⌋N

µ→⌈⌈C⌋⌋N
µ)→Ω | ω:Ω,⌈⌈∆⌋⌋N

µ

By Induction Hypothesis

⌈⌈Γ⌋⌋N
µ ⊢λµ ⌈⌈P⌋⌋N

µ
:⊥ | α:⌈⌈A⌋⌋N

µ
,ω:Ω, ⌈⌈∆⌋⌋N

µ

⌈⌈Γ⌋⌋N
µ ⊢λµ µα.⌈⌈P⌋⌋N

µ
:⌈⌈A⌋⌋N

µ | ω:Ω,⌈⌈∆⌋⌋N
µ

By Lemma 10.7

⌈⌈Γ⌋⌋N
µ ⊢λµ ⌈⌈Q⌋⌋N

µ′
:(⌈⌈A⌋⌋N

µ′→Ω) | ω:Ω,⌈⌈∆⌋⌋N
µ

⌈⌈Γ⌋⌋N
µ ⊢λµ µα.⌈⌈P⌋⌋N

µ⌈⌈Q⌋⌋N
µ′

:Ω | ω:Ω,⌈⌈∆⌋⌋N
µ

⌈⌈Γ⌋⌋N
µ ⊢λµ [ω]µα.⌈⌈P⌋⌋N

µ⌈⌈Q⌋⌋N
µ′

:⊥ | ω:Ω,⌈⌈∆⌋⌋N
µ

31

11 FromX to the Machine

Now that we have a consistent and complete translation fromX to λµ, we can define a translation
from X to Bierman’s abstract machine. However, first we must elaborate on the reduction rules for
the machine. In Bierman’s system, naming discards the current continuation and restores a previously
saved continuation. But this relies on the fact that the named variable is bound and therefore already
points to some previously saved continuation. This need notbe the case: in fact, the translation from
X to λµ creates terms containing free name variables (signified byω.) What happens when a term
named by a free variable is reduced?

To see how this should work, refer to the idea of a control stack mentioned in§2. We have seen that
aµ-abstraction pushes the current context onto the control stack and a naming pops it. When you name
a term with a free variable, such asω in our translation, you are popping the outermost context, i.e.
returning control to the top of the stack. Hence a term such as[ω]M should be understood to mean
“run M now”.

The translation fromX to the machine is then as follows:

Definition 11.1 (FROM X TO THE ABSTRACT MACHINE)

⌈⌈〈x.α〉⌋⌋N
BM =

∆ 〈x(λv.µ!.[α](λ f . f v)), Σ〉

⌈⌈ŷPβ̂·α⌋⌋N
BM =

∆ 〈[α]λ f . f (λy.µβ.⌈⌈P⌋⌋N
µ), Σ〉

⌈⌈Pβ̂ [x] ŷQ⌋⌋N
BM =

∆ 〈x(λv.µ!.[ω]((λy.µ!.⌈⌈Q⌋⌋N
µ)(vµβ.⌈⌈P⌋⌋N

µ))), Σ〉

⌈⌈Pα̂ † x̂Q⌋⌋N
BM =

∆ ⌈⌈Pα̂ † x̂Q⌋⌋N
BM =

∆ 〈(λx.µ!.⌈⌈Q⌋⌋N
µ)(µα.⌈⌈P⌋⌋N

µ), Σ〉

⌈⌈Pα̂ † x̂Q⌋⌋N
BM =

∆ 〈(µα.⌈⌈P⌋⌋N
µ)⌈⌈Q⌋⌋N

µ′
, Σ〉

We can see from these translations that when a circuitP is cut with a circuitQ, the context surround-
ing P is saved and referred to by the name of the plug bound in the cut. If that plug appears free in any
of the subcircuits ofP then that context will be restored whenever the plug is encountered. In effect, the
introduction of a plug equates to the storing of a reference to a continuation. While the plug remains
free, it will always refer to the outermost continuation (the top of the control stack.) However, when it
is bound the plug will then refer to the continuation at the point at which it was bound.

We can illustrate this representation of continuations by comparing reduction inX with reduction of
the translation ofX circuits on the machine.
(cap) :

〈y.α〉α̂ † x̂〈x.β〉→N 〈y.β〉
⌈⌈〈y.α〉α̂ † x̂〈x.β〉⌋⌋N

BM =
∆ 〈(λx.µ!.[ω]x(λv.µ!.[β]λ f . f v))(µα.[ω]y(λw.µ!.[α]λ f . f w)), Σ〉
⇒ 〈µ!.[ω](µα.[ω]y(λw.µ!.[α]λ f . f w))(λv.µ!.[β]λ f . f v), Σ〉
⇒ 〈[ω](µα.[ω]y(λw.µ!.[α]λ f . f w))(λv.µ!.[β]λ f . f v), Σ〉
⇒ 〈(µα.[ω]y(λw.µ!.[α]λ f . f w))(λv.µ!.[β]λ f . f v), Σ〉
⇒ 〈[ω]y(λw.µ!.[α]λ f . f w), Σ ⊎ {α 7→ [•(λv.µ!.[β]λ f . f v)]}〉
⇒ 〈y(λw.µ!.[α]λ f . f w), Σ ⊎ {α 7→ [•(λv.µ!.[β]λ f . f v)]}〉

So⌈⌈〈y.α〉α̂ † x̂〈x.β〉⌋⌋N
BM runs to exactly the same as⌈⌈〈y.α〉⌋⌋N

BM except thatα now points to a
continuation in which the result is applied to⌈⌈〈x.β〉⌋⌋N

µ′. This fits with the idea thatα refers to
the continuation at the point where it was bound.

32

(exp) :

(ŷPβ̂·α)α̂ † x̂〈x.γ〉→N ŷPβ̂·γ
⌈⌈(ŷPβ̂·α)α̂ † x̂〈x.γ〉⌋⌋N

BM =
∆ 〈(λx.µ!.[ω]x(λv.µ!.[γ]λ f . f v))(µα.[α]λ f . f (λy.µβ.⌈⌈P⌋⌋N

µ)), Σ〉
⇒ 〈µ!.[ω](µα.[α]λ f . f (λy.µβ.⌈⌈P⌋⌋N

µ))(λv.µ!.[γ]λ f . f v), Σ〉
⇒ 〈[ω](µα.[α]λ f . f (λy.µβ.⌈⌈P⌋⌋N

µ))(λv.µ!.[γ]λ f . f v), Σ〉
⇒ 〈(µα.[α]λ f . f (λy.µβ.⌈⌈P⌋⌋N

µ))(λv.µ!.[γ]λ f . f v), Σ〉
⇒ 〈[α]λ f . f (λy.µβ.⌈⌈P⌋⌋N

µ), Σ ⊎ {α 7→ [•(λv.µ!.[γ]λ f . f v)]}〉
⇒ 〈(λ f . f (λy.µβ.⌈⌈P⌋⌋N

µ))(λv.µ!.[γ]λ f . f v), Σ ⊎ {α 7→ [•(λv.µ!.[γ]λ f . f v)]}〉
⇒ 〈(λv.µ!.[γ]λ f . f v)(λy.µβ.⌈⌈P⌋⌋N

µ), Σ ⊎ {α 7→ [•(λv.µ!.[γ]λ f . f v)]}〉
⇒ 〈µ!.[γ]λ f . f (λy.µβ.⌈⌈P⌋⌋N

µ), Σ ⊎ {α 7→ [•(λv.µ!.[γ]λ f . f v)]}〉
⇒ 〈[γ]λ f . f (λy.µβ.⌈⌈P⌋⌋N

µ), Σ ⊎ {α 7→ [•(λv.µ!.[γ]λ f . f v)]}〉
Here the translation on the machine produces the same resultas theX reduction but we can see
thatα again refers to the continuation at the point where it was bound. If ŷPβ̂·α does not intro-
duceα then it must occur free insideP. When a freeα insideP is encountered it will restore the
continuation saved at the point where it was bound (in this case, the cut with〈x.γ〉 represented by
a context in which the result is applied to⌈⌈〈x.γ〉⌋⌋N

µ′.)

(exp-outs†) :

(ŷPβ̂·α)α̂ † x̂Q→N (ŷ(Pα̂ † x̂Q)β̂·γ)γ̂ † x̂Q

⌈⌈(ŷPβ̂·α)α̂ † x̂Q⌋⌋N
BM =

∆ 〈(µα.[α]λ f . f (λy.µβ.⌈⌈P⌋⌋N
µ))⌈⌈Q⌋⌋N

µ′
, Σ〉

⇒ 〈[α]λ f . f (λy.µβ.⌈⌈P⌋⌋N
µ), Σ ⊎ {α 7→ [•⌈⌈Q⌋⌋N

µ′]}〉
⇒ 〈(λ f . f (λy.µβ.⌈⌈P⌋⌋N

µ))⌈⌈Q⌋⌋N
µ′

, Σ ⊎ {α 7→ [•⌈⌈Q⌋⌋N
µ′]}〉

⇒ 〈⌈⌈Q⌋⌋N
µ′(λy.µβ.⌈⌈P⌋⌋N

µ), Σ ⊎ {α 7→ [•⌈⌈Q⌋⌋N
µ′]}〉

In this case we know thatα appears free insideP. It is less obvious that the abstract machine is
reducing towards the same result as standardCBN reduction inX but it is clear that, once again,α

refers to the continuation at the point at which it was cut, which will be restored when reduction
reaches a freeα in P.

However, what is particularly notable is that all free name variables, e.g.ω in these examples, refer
to the outermost continuation. They point to the top of the control stack. All other name variables
correspond to a plug that is bound in a cut. The plugs are always bound in a cut “above” the point
at which they are encountered (i.e. further up the control stack.) Thus the continuations that are
restored will always cause control to move up the stack, never sideways. So we do not have first-class
continuations inX at all: we have something much more like exceptions.

33

12 Conclusion

I have shown thatX , like other calculi based on classical logic, has the ability to represent the saving
and invoking of continuations. Unlike other calculi, such as λµ andλC, in which such representations
are syntactic extensions to a calculus without this ability, the modelling of control flow is an inherent
part of reduction inX . Every cut involves the binding of a plug and every binding ofa plug turns
that plug into a reference to the continuation at the point where it was bound. So our intuition thatX
inherently works in a “continuation-passing style” has proved to be correct.

However,X does not have first-class continuations. It is not possible to model inX the kind of
behaviour that I demonstrated with Scheme in§2. Instead, the continuations inX are more structured:
they are restricted to moving up the control stack like an exception. Although this might be considered a
good thing, as it means thatX is in some sense “well-behaved”, I would like to see further investigation
of the possibility of representing first-class continuations inX . Intriguingly, Griffin suggests [7] that a
calculus needs⊥ or at least some representation of negation in its typing system in order to represent
first-class continuations. It would be interesting to studythe extension ofX that represents negation
with that in mind.

If I had more time, I would like to have been able to investigate a calculus with first-class con-
tinuations, such as Griffin’sIdealised Scheme, in order to better understand the role of negation and
contradiction in the representation of continuations. I would also like to have been able to construct an
abstract machine forX , rather than just a translation fromX into an abstract machine designed for a
different calculus. Similarly, I would like to study some actual implementations ofX . All of the above
would have been useful extensions of my project.

34

References

[1] Z. Ariola and H. Herbelin. Minimal classical logic and control operators. In J. P. J. C. M. Baeten,
J. K. Lenstra and G. J. Woeginger, editors,Lecture Notes in Computer Science, volume 2719 of
ICALP, pages 871–885, 2003. Available from: http://citeseer.ist.psu.edu/ariola03minimal.html.

[2] Z. Ariola, H. Herbelin, and A. Sabry. A type-theoretic foundation of continuations and prompts.
In ICFP ’04: Proceedings of the ninth ACM SIGPLAN international conference on Functional
programming, pages 40–53, New York, NY, USA, 2004. ACM Press.

[3] J. Avigad. Classical and constructive logic. Lecture notes, September 2000. Available from:
http://www.cs.cmu.edu/∼fp/courses/logic/lectures/lecture08.html.

[4] H. Barendregt.The Lambda Calculus: its Syntax and Semantics. North-Holland, Amsterdam,
Netherlands, revised edition, 1984.

[5] G. M. Bierman. A computational interpretation of theλµ-calculus. In L. Brim, J. Gruska, and
J. Zlatuska, editors,Proceedings 23rd Int. Symp. on Math. Found. of Comp. Science, MFCS’98,
Brno, Czech Rep., 24–28 Aug. 1998, volume 1450, pages 336–345. Springer-Verlag, Berlin, 1998.

[6] N. G. de Bruijn. The mathematical language automath, itsusage and some of its extensions. In
Symposium on automatic demonstration (IRIA, Versailles 1968), Lecture Notes in Mathematics
125, pages 29–61. Springer, 1970.

[7] T. G. Griffin. The formulae-as-types notion of control. In Conf. Record 17th An-
nual ACM Symp. on Principles of Programming Languages, POPL’90, San Francisco, CA,
USA, 17–19 Jan 1990, pages 47–58. ACM Press, New York, 1990. Available from:
http://citeseer.ist.psu.edu/griffin90formulaeastypes.html.

[8] W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and J. R. Hindley,
editors,To H. B. Curry: Essays on Combinatory Logic, Lambda Calculusand Formalism, pages
479–490. Academic Press, London, UK, 1980.

[9] J.-L. Krivine. Classical logic, storage operators and second-order lambda-calculus. InAnn. Pure
App. Logic, volume 68, pages 63–78. Elsevier, 1994.

[10] D. Madore. A page about call/cc [online]. Available from:
http://www.madore.org/∼david/computers/callcc.html.

[11] J. Moschovakis. Intuitionistic logic. In E. N. Zalta, editor, The Stanford En-
cyclopedia of Philosophy. Stanford University, Spring 2007. Available from:
http://plato.stanford.edu/archives/spr2007/entries/logic-intuitionistic/.

[12] C.-H. L. Ong and C. A. Stewart. A Curry-Howard foundation for functional computation with
control. In Conf. Record 24th ACM SIGPLAN-SIGACT Symp. on Principles ofProgramming
Languages, POPL’97, Paris, France, 15–17 Jan. 1997, pages 215–227. ACM Press, New York,
1997. Available from: http://citeseer.ist.psu.edu/ong97curryhoward.html.

[13] M. Parigot. Lambda-mu-calculus: An algorithmic interpretation of classical natural deduction. In
LPAR ’92: Proceedings of the International Conference on Logic Programming and Automated
Reasoning, pages 190–201, London, UK, 1992. Springer-Verlag.

[14] M. E. Szabo, editor.The Collected Papers of Gerhard Gentzen. Studies in Logic and the Foun-
dations of Mathematics. North-Holland, Amsterdam, Netherlands, 1969.

[15] S. van Bakel and P. Audebaud. UnderstandingX with λµ. INRIA No. 00097235, September
2006.

[16] S. van Bakel and P. Lescanne. Computation with classical sequents. Unpublished.
[17] A. N. Whitehead and B. Russell.Principia Mathematica. Cambridge University Press, 2nd

edition, 1925.
[18] Wikipedia. Continuation [online]. Available from: http://en.wikipedia.org/wiki/Continuation.

35

