Continuations in X

Charles Collicutt

Project Supervisor: Steffen van Bakel
Second Marker: Maria Vigliotti

Department of Computing, Imperial College London, 180 QiLe6€ate, London, SW7 2BZ
cacO4@loc. i c. ac. uk

June 19, 2007

Contents

Introduction
What is a continuation?
Classical and Intuitionistic Logic

Natural Deduction and Gentzen’'s Sequent Calculus

g A W N

The simply typed A-calculus and Curry-Howard Isomorphism
5.1 Reduction Strategies e

6 X
6.1 Syntax e e e
6.2 Reduction
6.3 Reduction Strategies e e
6.4 TypingforX e e

7 Parigot’s Au-calculus

8 Bierman’s Abstract Machine
8.1 Evaluation Contexts e e e
8.2 TheMachine

9 FromAuto X

10 From X to Au
10.1 The Translation e e
10.2 Proof of Type Preservation i i e

11 From X to the Machine

12 Conclusion

14
15

16
16

17
17
17
19
20

21

24
24
24

26

28
28
29

32
34

Abstract

A one-to-one correspondence, known as thary-Howard Isomorphisnafter its discoverers, has
been shown to exist between the simply typedalculus and implicative intuitionistic logic in a nat-
ural deduction framework. This correspondence has allowselarchers to analyse the links between
intuitionistic logic and function abstraction and apptioa. X" is a logical calculus that exhibits a
Curry-Howard Isomorphism with implicative classical logResearch has shown that classical logic
is linked to control in computation. Unlike most logical cali, X has no notion of function abstrac-
tion or application nor does it include variables or subgtin. InsteadX’ describes structures called
“circuits” that consist of named “plugs” and “sockets” titain be wired together. There is a notion of
“flow” through these circuits, which leads to the intuitidrat, rather than modelling functional pro-
gramming like theA-calculus,X models control flow and continuations. In this project | istigate
the representation of continuationsth By constructing a translation frofi to an abstract machine
that models the saving and restoration of evaluation césitereveal how reduction i’ corresponds

to operations on continuations.

Acknowledgements

| would like to thank Dr. van Bakel for his support and encgamment and for providing me with
the most interesting and enjoyable part of my course.
| would like to thank Alex Summers for his advice and explaores.

1 Introduction

The A-calculus [4] has proved very useful for the investigatidrfumction abstraction and applica-
tion. It inspired the functional programming paradigm linting the languages LISP, ML and Haskell.
Through the Curry-Howard Isomorphism [8], a one-to-onaaswondence between implicative intu-
itionistic logic and the simply typed-calculus has been established. This gives us an insighthst
relationship between logic and computation. Howeverjtimistic logic is not as expressive as classi-
cal logic. Recently, various new calculi have been invenibed exhibit a Curry-Howard Isomorphism
with fragments of classical logic. Investigations of thea&uli have revealed a link between classical
logic and control and continuations [7, 9, 12, 1, 2, 5].

X is a language that exhibits the Curry-Howard Isomorphisith thie implicative fragment of clas-
sical logic [16]. Whereas typing for th&-calculus is based on natural deducticti,is inspired by
Gentzen’s sequent calculus [14]. Function abstractionagmdication do not appear i’ (although
they can be interpreted) and it does not have variables atifition. InsteadX describes structures
called “circuits” (or “nets”) whose component parts can bereected together. A circuit may contain
a number of “plugs” that can be connected to the “sockets’hotlzer circuit (or vice versa.) We have
a notion of “flow” through the circuits - that is to say, the oetions between plugs and sockets have
a direction. Thus, intuitivelyX seems to model contexts or continuations. The purpose ofrojgqt
has been to elucidate this idea: | will show how continuatiare represented if and how reductions
in X are related to operations on continuations. This will pdeuils with a further insight into the link
between classical logic and computation.

Parigot extended th&-calculus to create a new calculus which would corresporalftagment of
classical logic [13]. He called his calculdg:. However, unlikeX’, Parigot'sAu is still based on a
natural deduction framework. Bierman has shown [5] thatan be interpreted as “a typadecalculus
which is able to save and restore the runtime environmeng’pkbvides an abstract machine fqu
which demonstrates its ability to represent the saving astbring of continuations. So for my project
| have investigated representationsAgf in X' (and vice versa) and have produced a translation from
X to Bierman’s abstract machine vigu. Having proved the completeness and consistency of this
translation, | have used it to discover then illustrate #@esentation of continuations A.

2 What is a continuation?

Continuations are a concept useddynamicallymodify the control flow of a program. In order to
explain what | mean by this, it will first be necessary to resaime better knowrstatic methods

of modifying a program’s control flow. By “static method” | rae a method whose effects can be
completely analysed statically, i.e. without running thegsam. Because such analysis depends only
on the source code of the program (and not the context in wihishrun) | will use “lexical” as a
synonym for “static”.

The most general lexical method of altering the control fldva @rogram is theyot o statement.
This statement causes control to jump to a label elsewhdreiprogram: the target label may appear
anywhere in the program. All that happens in practice istt@program counteiis overwritten with
the address of the instruction referred to by the label. Thagot o statement can be used to cause
control to jump to any point in the program. For example, abersthe C program in Listing 1.

Listing 1: gotoin C

int i = 0;
firstlabel:

++i ;

printf("%d", i);

goto thirdl abel;
secondl| abel :

__|;

printf("o%d", i);
t hi rdl abel:

++i ;

goto firstlabel;

When compiled and run, this program will output all the oddural numbers in ascending order.
The code between the second and third labels will never beuge@: control jumps to the third label
then back to the firsad infinitum

In order to better structure our control of the program, we iaéroduce the notion of structure into
the program’s code. Typically this is done by dividing thegmam into nestethlocks Now we have
an outermost block, consisting of the program in its entinetthin which there are blocks of code that
may themselves contain further blocks. Most trivially, vea eise these blocks to implement loops and
conditionals. For example, the C program in Listing 2 wiltput the odd natural numbers less than 20
in ascending order and it will do so five times.

Listing 2: Structuring with blocks

int i = 0;
int j 0;

while (i < 5) {
while (j < 20) {
if (] %2 1!=0) printf("%", j);
++

Here the blocks are denoted by curly braces and are usedeiordie¢ the scope ofhi | e loops.
Now that the program is lexically structured into blocks, wan use that structure to implement a
more structured (i.e. restricted) versiongwt o. In fact, thewhi | e loop is itself a combination of a
conditional and a structuregbt o. However, more interestingly, in C we can use bhheeak statement
to make control jump outside the current block. Listing 3taoms an alternative implementation of the
program in Listing 2 usingpr eak statements.

Listing 3: Breaking out of blocks

int i = 0;
int j =0;
while (1) {
while (1) {
if (j %92 1=0) printf("%d", j);
+4 ;
if (j > 19) break;
}
j =0
++i ;
if (i > 4) break;
}

Herebr eak is acting likegot o but it is restricted to jumping “outwards”. It cannot causaicol
to jump to any arbitrary point in the program @st o can, instead it can only cause control to jump
into an outer block. This is even more obvious in Java, in Withebr eak statement is more flexible
than in C. In Java, you cdor eak to a label in much the same way that you would gs¢ o but you
can only do so if the label is in an outer block. For examplgoif were searching through a matrix for
an instance of the integer 13 you might do something likeirhgs4.

Listing 4. Breaking to a label

int i = 0;
int j =0;
bool ean found = fal se;

out si de:
while (i < WDTH) {
while (j < HEIGHT) {
if (matrix[i][j] == 13 {
found = true;
br eak out si de;

++

++i ;

Although the Java syntax requires you to place the labeleab#ginning of the block from which
you wish to escape, it is clearly much the same getao. However, Listing 5 is not valid Java code.

Listing 5: Invalid Java Break

while (i < MAXI) {
while (j < MAXJ) {
br eak si deways;
}
}
while (k < MAXK) {
si deways:
while (I < MAXL) {
}
}

Here an attempt is made to jump not to an outer block but toh@ndtlock at the same depth in the
“nesting tree”. Whilegot o can perform such arbitrary jumps, the more restridiedak cannot. For
this reason, we might cdlir eak an “outgoing-onlygot o”.

Continuations are also used to modify the control flow of aypm but they do not do so statically.
Their behaviour cannot be completely determined by a légigalysis. Rather than dealing with lexical
structures such as blocks, continuations operate on theotstack itself. So it will now be useful to
investigate the idea of a control stack.

If we ignore for the moment the method of passing argumerdsreturning results, a function call
consists of two things. Some control information, such agéturn address and the stack base pointer,
is pushed onto the stack and control jumps to the beginnirigeofunction code. When the function
has completed, the control information is used to jump badké point in the program at which the
function was called and to pop everything that the functioshged onto the stack. So we can view the
stack as being divided inftames Every time a function is called another frame is added taetitkof

the stack and every time a function returns a frame is rembreed the end of the stack.

But rather than considering the actual block of memory usealstack, consider instead the slightly
more abstract idea of a control stack. It can be thought ofliaked list with each node corresponding
to a frame. Each frame contains the information local to thattion (thecontexj and a link back to
the frame of the function in which it was called. Thus evemydia function is called, another frame is
added to the end of the list; and every time a function retutasrame is removed from the end of the

list. Consider the C program in Listing 6.

Listing 6: A C program with nested function calls

int add2lnts(int x, int y) {
return x + vy;

}

int add3Ints(x, vy, z) {
int p = addTwol ntegers(x, VY);
return p + z;

}

int main() {
int x = 1;
int y =2;
int z = 3;

add3Ints(x, y, z);
add2ints(y, z);

return O;

As this program runs it would have a control stack that gromgsshrinks like this:

main:x — 1,y +—2,z+—3

main:x — 1,y +— 2,z — 3 |—|add3Ints:x — 1,y +— 2,z +— 3

mainix— 1,y +— 2,z+— 3|—|add3Intsx— 1,y +—2,z+—3,p+— 3

mainix—1,y+—2,z+—3

main:x — 1,y — 2,z +— 3 |—|add2Intsix — 2,y — 3

mainix — 1,y +—2,z+—3

main:x — 1,y +— 2,z +— 3 |—|add3Ints:x — 1,y — 2,z = 3 |—————>

add2ints:ix — 1,y +— 2

If we make an analogy between lexical blocks and frames inndraiostack, we can see that the
br eak statement is analogous to arception In languages that support this feature, it is possible to
throw (or raise) an exception. When this is done, execution in the curremttfan stops and control
returns to the calling function, i.e. control moves from thierent frame to the next frame up the control
stack. This is much the same as returning from a function esslabove. However, unlike a function
return, if the exception is nataughtit will propagate up the control stack. Control will conteto
jump frame by frame up the control stack until either the ekioa is caught or the top of the stack is
reached and the program terminates.

An exception may be caught by enclosing the code that miglitte the throwing of an exception in
atry block. Attached to this try block should becatchblock containing arxception handlemwhich
is a block of code to be executed in the event of an exceptiomghmaught. Exceptions are usually
used to signal that an error has occurred, so the exceptitdidridends to be code designed to help the
program recover from an error. Exceptions can be typed: jipcbloriented languages they are usually
implemented as instances of exception classvith a whole hierarchy of classes to represent different
types of errors. A single try block may be associated withtiplel catch blocks, each one intended to
catch a different type of exception (perhaps one for an I@reane for an array index out of bounds
error and so on.) Listing 7 demonstrates the use of excepirodava.

Listing 7: Exceptions in Java

public class Exanple {
private void riskyMethod() throws Exception {
/1 Do sonething that might result in an error
if (error == true) {
t hrow new Exception();
}
}

private void processbData throws Exception {
try {
ri skyMet hod() ;
/!l Do sonme | O action here, e.g. read a file
} catch (I CException e) {
/1l Deal with the 10 error

}
}

public static void main(String[] args) {
try {
processbhat a() ;
} catch (Exception e) {
/1l Deal with the error
}

/1 Do sonething el se

In this example, theai n method calls ther ocessDat a method that in turn calls thei sky Met hod
method. Ifr i skyMet hod encounters an error it will throw an exception. Executiolt wimediately

cease imi skyMet hod and the exception will be thrown againpm ocessDat a. pr ocessDat a
will not catch this exception (as its catch block only caglxceptions of typeé OExcepti on)
so execution will cease ipr ocessDat a and the exception will be thrown again mai n. Here
the exception will be caught and execution will continuaeximi n after the try block. So, assuming
ri skyMet hod does indeed encounter an error, the control stack will gnosvsdrink like this:

| main|— processDatfl
M—»‘ processDat#—»‘ riskyMethod

Thus function returns, which cause control to move up onadraare analogous tir eaking out of
the innermost block (alsr eak does in C.) Whereas exceptions, which can propagate updirie
control stack and so cause control to jump many frames in onarg analogous to labellddt eaks
in Java, which can jump out of many nested blocks in one go.

Just asdr eak can be thought of as an “outgoing-ortyt 0”, so exceptions can be thought of as
“upwards-only continuations” [10]. As we have seen, exioes can only cause control to move up
the control stack. However, in languages that supportdlests continuations, you can save a reference
to any frame and use that reference to move control to thaterat any time. Also, such languages
typically employ some form of garbage collection. This netrat a frame is no longer automatically
removed when the function that created it returns: now adranonly removed wheall references to
it have been deleted, including both the implicit referefroen the frame above it in the control stack
and any other references that you might have created. Thusotitrol stack is no longer a stack at all
but instead an arbitrary graph.

For a program without angot o statements, the lexical structure of the program can beitlesidn
terms of nested blocks forming a hierarchical tree. The @ffgeaunrestrictedjot o statement destroys
that structure by allowing control to jump to any arbitranint in the tree. Analogously, for a program
without continuations, the control flow of the program camdg@esented by a structured control stack.
The use of first-class continuations destroys that stradiyrturning the control stack into an arbitrary
control graph.

First-class continuations first appeared in the progrargndnguage LISP. In the Scheme dialect
of LISP there is a function calleclal | - wi t h- current - conti nuati on, usually abbreviated to
cal | / cc. This function takes a single argument, which is itself afiom that takes a single argument,
and it passes to that function a reference to the currentre@iion. Socal | / cc calls its argument
with the current continuation. You can then, for instanderesthe reference to the continuation in a
variable, which will allow you to invoke (restore) the caniation at another point in the program (in
Scheme, as in some other languages with first-class cotitingaa continuation can be invoked by
calling it in the same way that you call a function.) Listingl@monstrates this function [18].

10

Listing 8: call/cc in Scheme

(define aContinuation #f)

(define (test)
(let ((i 0))
(call/cc (lambda (k) (set! aContinuation k)))
(set! i (+1i 1))
|

In the first line of Listing 8, a variable callemiCont i nuat i on is defined with a dummy value. In
the rest of the listing, a function calldédest is defined. The whole body of the function sits within a
| et block, which defines the local variableand initialises it to zero. The first line of thhest block
invokes thecal | / cc function.

Thel anbda construction defines an anonymous function (the name isr@tspy theA-calculus)
which is passed as an argumentt | / cc, which calls its argument with a reference to the current
continuation. The anonymous function uses the buik&t ! command to assign the reference to
the continuation to the global variabdeCont i nuat i on. In the rest of thé est function, the local
variablei is incremented by one and then returned.

Assume the existence of an interactive Scheme interpreétehvdisplays the return value of a func-
tion call. Listing 9 shows some results you could obtain hg¥irst run the program in Listing 8.

Listing 9: Running Listing 8 on an interpreter

(test)
(aConti nuati on)
(aConti nuati on)

(define anot her Ref erence aConti nuati on)
(test)

(aConti nuati on)

(anot her Ref erence)

A VNVEFEFYVVWVNVEYV

If we call the interpreter’'s frameri n, then running Listing 9 would cause the control “stack” to
develop as shown below.

11

main

main

main

main

main

main

main

main

I
e
I
I
I

12

When discussing logical calculi, we can analyse contiouaatiusing the idea of aevaluation con-
text The intuition behind the use of contexts is that a contilmais essentially a “calculation with
a hole in it.” The hole represents the result of some subudtation that has yet to be achieved and
the evaluation context describes what will happen to thsultavhen it has been achieved (i.e. how
it will be evaluated.) In the terms that we have been usingasad describe continuations, the hole
represents the point in the control graph referred to by diraation variable. For example, consider

the following arithmetical calculation:

2x4+3

According to the normal rules of precedence, the multiplicawill be performed before the addi-
tion. So we could say that there is a continuation here: 3heiladded to whatever the result of the
multiplication turns out to be. We can represent this by enfda with a hole in it:

e+3

A graph of the original calculation might look like this:

N\
2/ \4

In which case the formula with a hole would look like this:
+
o/ \3

This gives us a useful method of representing continuaifioftgical calculi as contexts and it is the
method | will use in this project.

13

3 Classical and Intuitionistic Logic

Intuitionistic logic is the logical system developed by ey as a formal basis for Brouwer’s intu-
itionistic mathematics [11]. According to Brouwer, in orde show(A V B) you need a proof ofA or
a proof of B. For example, consider the following mathematical prodf [3

Theorem 3.1 There are irrational numbers a and b such thdtis rational.

Proof: Consider\/iﬁ. If this is rational, we are done: we can let= b = /2. Otherwise, it is

irrational. Then we have s
2
(fzﬁ> Y LN Py

which is rational. So, in this case, lebe \/Eﬁ and letb be /2.]

Classically, this proof is valid. However, according to Bneer's intuitionism, it is not. We have
proved the existence of a pair of numbers that have a certajrepty but we are unable to sahich
pair of numbers itis. An intuitionistic existence proof sftwprovide an unconditional definition of the

objects it asserts to exist. The above proof rests on thergatsan that “either\/i\/E is rational or it is
not” but Brouwer would argue that such a claim needs furthstification of its own.

This has the consequence that the law of excluded midélle —A) is an axiom in classical logic
but not in intuitionistic logic. Thus there are proofs thaé &lassically valid but intuitionistically
unprovable. However, a translation from classical proofistuitionistic proofs, first defined by Godel
and Gentzen, links classical logic and intuitionistic ogi

Definition 3.2 (DouUBLE NEGATION TRANSLATION)
The translatior - || is defined inductively as follows:

TAll £ ——A, if Ais atomic
TA=B] = [All =[B]
TAABl = TAI ATB]
TAVB] = ~(=[A] A~TB)

Theorem 3.3 (DOUBLE NEGATION TRANSLATION)
Let A be a proposition composed of one or more atomic propositEmusthe logical connectiveg, A
and =. A is provable classically if and only if A]| is provable intuitionistically.

Thus intuitionistic logic makes a distinction betweef—-A A —B) and(A V B) that classical logic
does not make. However, the calculi in which we are intecegie the purposes of my project only
correspond to implicative logic so we need only be concermitidl the first two translation rules.

14

4 Natural Deduction and Gentzen’s Sequent Calculus

In a deduction system with sequents, one can wifite B to signify that “A justifies B". A is

an assumptionand B is a conclusion In the natural deduction system, there is only ever a sin-
gle conclusion but there may be multiple assumptions. A$pA,, ..., A, = B should be read as
A1 NAY N ... NA, F B. We usel to signify an arbitrary conjunction of assumptions.

Natural deduction rules either introduce or eliminate dagjiconnectives on the right-hand side of
the sequent. For example, implicative intuitionistic gan be represented in a natural deduction
framework with just three rules:

(AX) : 74 (AeT)
rAFB

., -~~~ -
=V Ao

'-A—B N=A

(—>E): B

In contrast, the rules of Gentzen’s sequent calcukig14] only introduce connectives but can
do so to both sides of the sequenk allows sequents with multiple alternative conclusionghsas
Aq, Ay, ... Ay H Bl,Bz,...,Bn,WhiChShomd bereada“.sl NAAN...NA, F Bi1VByV...VB,.
We useA to signify an arbitrary disjunction of conclusions. Theymlay to eliminate a connective in
LK is to eliminate the whole formula in which it appears by anliggfion of the(cut)-rule. Lk (—) is
a variant of this calculus which can be used to representidatple classical logic:

rFAA T,AFA

AX) ' T AL 4 A cut) :

(AT A aa (o =

(=R) : I'AFB,A (:>L)_F|—A,A I''BFA
‘'THA=B,A ' NA=BFA

Gentzen defined aut-elimination procedurdor LKk that removes all applications of tifeut)-rule
from a proof. He proved [14] that for any proof that contains cuts there exists a normalised version
of that proof in which all cuts have been removed. The proeeaorks via a series of local rewrites
of the proof tree and we will see i that reduction int’ is based on cut elimination fax .

15

5 The simply typed A-calculus and Curry-Howard Isomorphism

| assume the reader is familiar with thecalculus [4] and will just briefly recall the definition ofifébda
terms and3-reduction.

Definition 5.1 (LAMBDA TERMS AND 3-REDUCTION)
The setA of lambda termss defined by this syntax:

M,N == x| Ax.M | MN
The reduction relation— g is defined as the compatible closure of this rule:
(Ax.M)N —3 M[N/x]

This calculus has a notion of type assignment that correlgptmimplicational intuitionistic logic
in a natural deduction framework. This correspondenceaitgps called theCurry-Howard Isomor-
phism Informally, this is the “Terms as Proofs, Types as Propmsit’ idea.

Definition 5.2 (CURRY-HOWARD | SOMORPHISM
Let M be a (closed) term, and a type, thenVl is of type A if and only if A, read as a logical formula,
is provable in the corresponding logic, using a proof whasesire corresponds .

This isomorphism expresses the fact that one can assod&t® &vith a proof such that propositions
become types and proof reductions become term reductiord.[@ogical formulae can be seen as
types and vice versa. The implicatign=-B corresponds to the typé— B. Further, the inference rules
of implicative intuitionistic logic are isomorphic to theding rules of the simply typed-calculus:

Definition 5.3 (TYPE ASSIGNMENT FORA-CALCULUS)
Every A term has a type, derived using the rules below.

I x:Ab,M:B
(AX) : ———————— (—1): i A
NxAFyx:A 'EyAx.M:A—B

FI—;\MA—>B rl—)\NA

(—>E):
'y MN:B

5.1 Reduction Strategies

It is frequently the case that a term in a calculus could baged in more than one way. For example,
the lambda ternfAx.xx)((Ay.y)z) could be reduced in two different ways:

(Ax.xx)((Ay.y)z) —p (Ax.xx)z
(Axxx)(Ay-y)z) —p ((Ay-y)2)(Ay.y)z)

Lambda terms of the formy or Ax.M are calledvalues If 3-reduction only occurs when the ar-
gument is a value then the system obeysQ@adi-by-Valuereduction strategydgv). In contrast, the
second example above demonstrat€ali-by-Namereduction €BN) in which substitution occurs be-
fore the argument has been reduced to a value. If a term ircalaalwill always reach the same normal
form regardless of which strategy is used then that caldslcenfluent It is notable that systems based
on natural deduction are generally confluent whergds not. Cut-elimination in.k is not confluent:
non-determinism is a key feature of classical logic.

16

6 X

X is alanguage designed to exhibit the Curry-Howard Isomismhwith implicative classical logic. It
is based onk rather than natural deduction, which means that it does aw# hbstraction-61) and
application (~E) but instead has four syntactic constructs, corresportgitige Ax), (=R), (=L) and
(cut) rules ofLk (—), and a system of reduction based on cut-elimination.

6.1 Syntax

The terms ofY” are called “circuits” and they are composed of named “pluagsd “sockets”. If you
have two circuits, designatedtlandQ, then you can cut them together, writtBex T xQ, which can be
thought of as wiring the plugs namedn P to the sockets namedin Q. Using the notation from the
Principia Mathematicg17] we write x to indicate thatx is bound. So, in the previous exampiejs
bound inP andx is bound inQ.

Definition 6.1 (SYNTAX)
The circuits of ¥ are defined by the following grammar, whexgy, . .. range over the infinite set of
socketsanda, 3, . .. over the infinite set oplugs

PQ:= (xa) | jP&-B | Pa[y)%Q | PatZQ
capsule export import cut

Diagrammatically, we represent the basic circuits as:

Definition 6.2 Thefree socketandfree plugsin a circuit are:

fs((re)) = {x} fp(<x @) =A{a}

fs(xPB-o) = fs(P)\ {x} fP(xPB-a) = (fp(P)\ {B}) U{a}
fs(Pa[y] xQ) = fs(P) Uiy} u(fs(Q) \ {x}) fp(Pa[y]XQ) = (fp(P) \ {a}) UTP(Q)
fs(PatxQ) = fs(P)u(fs(Q)\ {x}) fp(PatxQ) = (fo(P) \ {a}) UTP(Q)

A socketx or pluga which is not free is callethound written x € bs(P) anda € bp(P). We will

write x & fs(P, Q) for x & fs(P) A x ¢ fs(Q).

6.2 Reduction

Reduction takes place through the elimination of cuts. ilnigortant to know when a socket or a plug
is introduced, i.e. is connectable. Informally, a cirdRiintroduces a socket if P is constructed from
subcircuits which do not containas free socketx only occurs at the “top level.” This means that
is either an import with a middle connectpr] or a capsule whose left partis Similarly, a circuit
introduces a plug if it is an export that “createss or a capsule whose right partds

Definition 6.3 (INTRODUCTION)

Pintroducesy: P = (x.3) or P = Ra [x] yQ, with x ¢ fs(R, Q).
Pintroducesx: P = (y.a) or P = XQB-a, with a & fp(Q).

If a circuit consists of two subcircuits cut together, bottwhiich introduce connectors, then reduc-
tion is simple.

17

Definition 6.4 (LoGICAL REDUCTION)
Assume that the circuits on the left-hand side of the rulesduce the socket and the plugx:

(cap) : (yoyatx(x.8) — (y.B)

(exp) : yPB-a)a 1 x(x.y) — yPB-y

(imp): (y.oyafx(PB[x]zQ) — PB[y]zQ _
(exp-imp : (yPB-a)a t x(QY [x]ZR) — (Q¥1¥P)B 1 zR

or Oyt j(PB1ZR)

[yD“MxDB] _, YnB

[lpﬁ,_“. M—x-ml—j _, (mrB)x

However, a cut circuit might not introduce its connector.that case the cut must be propagated
through the circuit so that every free instance of that cotords cut with the other circuit. In order to
define the propagation rules, we must extend the syntax wismew operators calleactivatedcuts:

P:u=...| Pa/xQ| PaXxQ

If two circuits are cut together and they do not both intragtiteir connectors then reduction ac-
cording to the logical rules given above cannot occur. Fing cut must be activated.

Definition 6.5 (ACTIVATING THE CUTS)

(act-L) : PatxQ — Pa /xQ, if P does not introduce
(actR) : PatxQ — PaXxQ, if Q does not introducer

Notice that both side-conditions might be true, i.e. it ntigl the case that neither subcircuit intro-
duces its connector. If that is the case then either rule neaysled, which constitutesaaitical pair
or superpositionfor reduction inX and causes the calculus to be non-confluent. This shouldenot b
surprising given that cut-elimination irxk has the same property. The proof

I'Akk B, A Nk A,A T,BHk A

FreAoBA R MAZBIuWA L)
M A
reduces to both
F Bl A M A, A
rAtwBA T,ABrA _ THABA T,AlBA
Fhe AA T, ARk A MFx B, A T Bl A
M A M A

Other calculi based on classical logic, such as Parigqt'sdo not have this property. Even other
non-confluent calculi based on classical logic, such as élie® Apfi-calculus, fail to represent both
possible proof reductions given above.

Once activated, cuts must be propagated through the sultsitmtil they either disappear or are
eliminated by a logical rule.

Definition 6.6 (PROPAGATION REDUCTION)

Left propagation

(4d) : (y.aya /xP — (y.a)a T xP
(cap/) : (y-B)a/xP — (y.B), B#«
(exp-outs’) : (yQB-a)a /xP — (¥ (rofo) Y)Y t xPy fresh
(exp-ing’) : (JQB-y)& /XP — §(Q& /XP)B-v,y # «
(imp/) : (QB[z)JR)& *RP — (Q& #3P)B [2] J(R& # %P)
(cut’): (QBTYR)a *xP — (Qa /XP)B T y(Ra / XP)
Right propagation
(dX) : PaX x{x.3) — Pat x(x.)
(\cap) : P\ x(y.8) — (y.B), - y#£x
(xexp) : PAXR(jQBy) — F(PRXFQ)B-y
(Ximp-out§ : PaX X(QB [x] JR) — P&t Z((Pax Q) [z] 7(Pa X XR)), z fresh
(ximp-ins) : Pa X T(QB [z] JR) — (P&XxQ)B [z] J(P&X\XR),z # x
(xeut) : PaX X(QB T JR) (P&X Q)BT J(P&X XR)

The rules(exp-outs’) and(Ximp-outg deserve some attention. In the left-hand sideex-outs’)
« may not be introduced, which means thatould appear free insid@. The appearance outsigg
(i.e. after the dot) is dealt with separately by creating\a namey. Note that the cut associated with
thaty is then unactivated. This is because although we knowythatintroduced, we do not know if
x is introduced or not so the cut may need to be right-activedembntinue. A similar reasoning holds
for x in (Ximp-outg so a new name is created and the external cut is not active.

6.3 Reduction Strategies

As mentioned above, it is sometimes the case that both &otivaules are valid at the same time. This
is similar to the case described§h.1 in which a lambda term might be reduced in more than one way
(although in ther-calculus one always ends up at the same normal form regardfevhich choice one
makes becausg-reduction is confluent, whereas this is not the cas& inSo, analogously, there are
two different reduction strategies iki. Consider a ternPa T xQ whereP does not introducec andQ
does not introduce: intuitively, cev tends to pusl throughP andcgN tends to do the opposite.

Definition 6.7 (CALL-BY-VALUE AND CALL -BY-NAME)

e If a cut can be activated in two ways, thev strategy only allows it to activated vi@ct-L); we
write P — Q in that case. We can formulate this by replacing the (al&-R) by:

(actR) : PatxQ — PaX xQ, if Pintroducesx and Q does not introducer.

e If a cut can be activated in two ways, then strategy only allows it to activated viact-R); we
write P — Q in that case. We can formulate this by replacing the (ale-L) by:

(acti) : PatxQ — Pa /xQ, if P does not introducer and Q introducesx.

19

6.4 Typing for X

The typing forX” exhibits a Curry-Howard Isomorphism with implicative cda=l logic in the frame-
work of Lk (—) in the same way that the simple typing system for Akealculus is isomorphic to
implicative intuitionistic logic in a natural deductiorafmnework.

Definition 6.8 (TYPING FORX)
A context of socketE is a mapping from sockets to types, denoted as a finite seatsfhsents of the
form x: A, such that the subjects of the statements (€.gure distinct. We writd”, x: A for the context
defined by:
I x:A = TU{x:A}, if Tis not defined onx
=T, otherwise

(Notice that the second case implies that € I".) So, when writing a context d5 x: A, this implies
thatx:A € T, orI" is not defined orx. When we writel';, I, we mean the union df; andl, whenTly
andl, are coherent (if; containsx:A; andl, containsx:A; thenA; = A»).

Contexts ofplugsA are defined in a similar way.

Type judgements are expressed via a ternary relationl" = A, whereP is a circuit whose free
connectors can be found ihandA with their types. We say that is thewitnessof this judgement.

Type assignment fait’ is defined by the following sequent calculus:

(cap) : (x.) - T, x:AF A, A

P:-TFaAA Q:-T,x:BFA
Pa[y]3Q .- T, y:A=BF A

(imp) :

P: T,x:AF+ a:B, A
xPa-B:-TH B:A—B,A

(exp) :

P:TFaAA Q: - T,x:AFA
PatxQ :-THA

We write P ;- T' = A if there exists a derivation that has this judgement in tH&oboline. There is no
notion of type forP itself, instead the derivable statement shows s connectable.

(cut) :

20

7 Parigot’s Au-calculus

Parigot [13] extended th&-calculus in such a way that its typing rules would corregptinclassical
logic. However, he retained the natural deduction fram&wbr order to cope with the possibility of
multiple alternative conclusions, he introduced the notibactivation This allows only one conclu-
sion to be theactive conclusion at any one time, as in normal natural deductiahalows multiple
alternativepassiveconclusions to exist as well. The active conclusion is sgpdrfrom the other con-
clusions in Parigot's sequents bly Which is to be understood as the logical connectivdjust as
commas on the right-hand side of a sequent are usually unddrs The rationale for this system
becomes clear when we extend the rules of natural deductideal with classical logic.

As mentioned ir§3, classical logic can be thought of as intuitionistic logith the addition of a rule
expressing the law of excluded middle. However, rather tharlaw of excluded middle, it is possible
to add a rule for double negation elimination or proof by cadiction instead and get the same result.
Given one of those three rules, the other two become adr@sg{bhis is not quite true, Ariola and
Herbelin [1] distinguish between “weak classical”, “mirairclassical” and “full classical” axioms and
the logics that result from their addition to intuitiongstogic. However, for our purposes here we do
not need to make such distinctions.)

Proof by contradiction is a rule which allows you to statdf you can prove that the negation of
A (—A) implies contradiction). In intuitionistic logic, if you can prove that a propositi implies
contradiction that only allows you to state the negatiorhefpproposition (in fact, this is the definition
of negation:—A = A—_1.) Thus if—=A— 1 you may state-—A but you may not immediately state
A. Double negation elimination is the rule that allows youttiesA if you can prove-—A.

Parigot chose to add a rule for proof by contradiction:

(PC):F,A:LFL
A

Assumptions can now be discharged either througti the)-rule or, if they are of the formiA =_1),
through the abovéPC)-rule. However, in classical logiq,A =1) =B is logically equivalent to
AV B. So a single conclusion sequent such as

NNAi=.1,A,=>1,..., A,=1FB

is logically equivalent to the multiple conclusion sequent

FEB|AyAs,... Ay

Thus proof by contradiction becomes

FEL|AA

PC) :
(PC) FrEA|A

which exhibits the neutrality of_ for disjunction.
However, when we assumeti=- 1, we may have wanted to use it not for proof by contradiction

but actually as an implication as such:

NMA=1lrFA=1 NMA=1FA
NMA=1HF_1

21

And so we also need this rule:
r-A|AA
(L) ———
r-L]AA

where again the neutrality of for disjunction is exhibited. Alternatively, it is clearahif we have a
rule for PC, which requires the existence &f, then we also need a rule fdr introduction. Bearing in
mind that the sequerit- A | A, A is equivalent to the single-conclusion sequentA, —A I A, the
above rule is the obvious choice.

Parigot extended the typing systemtalculus to include the pseudo-tygeand added syntactic
constructs to act as witnesses to the two new ryleg€) and(_L1). He called the result th&u-calculus
as it uses two disjoint sets of variables: as before, Rontterdedesignatd variables, but now there
are also Greek letters designatingariables.

Definition 7.1 (TERMS OFAw)
M,N = x| Ax.M | MN | [«]M | pa.M

Definition 7.2 (TYPING RULES FORAL)

Type assignment foAu is defined by the following natural deduction system. Theran active
conclusion, labelled by a term of his calculus, and the mdtiive conclusions are labelled by the set of
Greek variables, 3,7, ...

(43 () Mx:Aby M:B | A
x): . . —l):
FxAby A | A It AX.M:A—B | A

Ty MiA—=B |A TH,N:A A

E
(—E) g MN:B | A

Iy M: L A A
(PC) : L
Iap poe. M:A | A

Thay [a]M:L | A, A

We can think of{a] M as storing the type oM among the alternative conclusions by giving it a
name: the set of Greek variables is called the setnfievariables and the rule correspondingltbis
callednaming Also, ua.M binds« in M and the rule corresponding RC is calledu-abstraction

Note that L is not a real type: no term may have a type_lofexcept as a result of thelLI) rule
above. Some authors emphasise this point by not inclugihyl in the category of terms but instead
call such expressions “commands” or just “named terms”.

Definition 7.3 (REDUCTION IN Ap)
In addition to the logica3-reduction from thel-calculus,Au also has structurat-reduction and two
simplification rules.

logical (j3) : (Ax.M)N — MIN/x]
structural (u) : (L. M)N — py.M[N-y/a]
renaming : pex.[B](ny.[8|M) — pe.[s]M[B/Y]
erasing: pa.[a]M — M if a does not occur inVl.

The notationM[N-y/«| denotes theecursivesubstitution of every named terfw| M’ found within
M by [y](M'N) (y is a fresh variable.) This is an unusual reduction step thiastiutes terms for
terms rather than the more usual terms for variableg-taduction we search through the body of the
abstraction §1) for free occurrences of the bound variabi@ and each time we find one we replace

22

it with the argument V). In p-reduction we recursively search through the body of thératison
(M) and each time we find a term named by the bound name varighlel() we replace it with the
application of that term to the argumerd#I(N) named with a fresh name variable, which we bind at
the outermost level.

It is not obvious that such a strange rule should do what we,veml will provide a somewhat
contrived example to show how it works. Consider the follogvhatural deduction proof:

\ /

' A—B| A—B,A
'-1|A—B,A
'-A—B| A—B,A
'-1|A—B,A
'-A—B|A
NAFA—B|A rAFA|A
r'AEB|A

Clearly there is plenty of opportunity for reduction. Hesdhe proof inhabited witiA . terms:

\ /

Itppx:A—B | :A—B, B:A—B,A
IMtap [a]x: Ll | :A—B, B:A—B,A
MFag ppB.Ja]x:A—B | a:A—B, A
oy [@pB.fa]x:L | :A—B, A
Iy pacalup.a)x:A—B | A
T, y:A b, pocfalpup.ja]x:A—B | A Fy:AFy A | A
I y:A by (poecjouB.alx)y:B | A
Now we can demonstrate the recursive nature of the struqtaraduction:

(no[apuB.[a]x)y — m/.[y]g(yﬁ.[y]xy)y) (structural)
o

— wy[v](po.fylxy) (structural)
— uy.[y]xy (renaming)
— Xy (erasing)

Which corresponds to the much more sensible proof:

-

F'FA—B|A
AFA=B| A TLAFA[A
LAFB|A

23

8 Bierman’s Abstract Machine

Bierman has shown [5] thatu can be interpreted as “a typedcalculus which is able to save and
restore the runtime environment.” In order to demonsttaitewe must formally introduce the idea of
anevaluation contexthat was mentioned ig2.

8.1 Evaluation Contexts

We write E[e] to signify an evaluation context in whidhis the ‘hole’ - the part of the calculation for
which we are waiting. The fundamental property of evaluatontexts is this:

Lemma 8.1 Every closed termvl, is either a valueV, or is uniquely of the fornk[R] whereE[e] is
an evaluation context anll is a redex.

How we constitute a system of evaluation contexts dependseoreduction strategy that we want to
use. Later, when we translate betwe€rand Ay, it will become necessary to pick a single reduction
strategy. This is becausg is symmetric and not confluent wheregsis asymmetric and confluent, so
Au cannot completely represent reductiomtin However, if we restrict ourselves to a single reduction
strategy, eitheccBv or CBN, then reduction inY’ will be confluent and we can construct consistent
and complete translations. Which system we choose is jaggbltrary but | have chosen to usen.
The system of evaluation contexts that Bierman presentsipdper is for a&Bv system so choosing
cBN allows me to do some more original work.

Definition 8.2 (SYNTACTIC CLASSES FORCBN)

Terms: M, N ::= x | Ax M | MN | [a|M | pa.M
Values: V = x| Ax.M
Evaluation Contexts: E ::= e | EM
Redexes: R = (Ax.M)N | [«]M | pa.M

Contrast this witlcBv, in which an evaluation context may also take the fafif but a redex must
take the forml’V (or apu-abstraction or naming.) As expected, in tteev variant a reduction can only
occur when the argument is a value but this restriction do¢sypply incBN. Equally expectedly, in
the CBN variant the redex always appears on the left, whereasinit can appear to the right of a
value. For examplgAx.M e] is a valid context incBV but not inCBN. In CBN the leftmost redex is
always reduced first.

8.2 The Machine

We represent the state of the abstract machine by a pairuthent evaluation context and a function.
The function maps name variables to evaluation contexfsidfsuch a function, theB & {« +— E[e]}
denotes that function extended with the mapping> E|e].

The single-step reduction rules for our machine are asvistio

(E[(Ax.M)N], L) = (E[M[N/x]], 2)
(E[ua.M], £y = (M, 2 {a — E[e]})
(Ella]M], 2@ {a — E'[o]}) = (E'[M], Z& {ax — E'[e]})

The first rule is just standard logicAtreduction from ther-calculus. In the second rule, we see that
p-abstraction causes a pointer to the current evaluatiotexbto be saved; then evaluation continues
inside the body of thei-abstraction. In the third rule, naming causes the curregiuation context to
be discarded and replaced by a previously referenced dotéuitively, we can see that this captures
the recursive nature of structuratreduction in theAu calculus.

24

Here is theAu term that was used as an examplgirbeing run on the machine:

((pe.[a]up.[o]x)y, L)

= ([a]up.[x]x ZU{OCH [ey]})

= ((uB.le]x)y, ZW{o — [oyl})

= (la]x, ZW {a > [oy], B [ey]})
(xy, ZW{a > [oy], B — [ey]})

If [«] N occurs withinua. M, then theu-abstraction looks like &y/catchblock, as described i§2,
and the naming looks like throwing an exception.

In order to investigate continuations 4t then, it makes sense to look at the relationship betwegen
andAp.

25

9 FromAuto X

We have seen that-abstraction and naming ihu correspond to saving and restoring continuations.
So now we would like to know how the equivalent operationsrapeesented it

We do not have the pseudo-typein our typing system foi’ so we cannot directly represent a single
p-abstraction or naming operation. However, if we extendsthdgax of X’ to represent negation, we
can use a proof containing double negation elimination poa®ent the process of naming immediately
followed by p-abstraction. The rationale for this will become clear whken construct the sequent
proof below.

First, we note that the negation of an assumption on thehbeitd side of a sequent moves it to the
right-hand side to be a possible conclusion. Similarly, nlegation of a conclusion moves it to the
left-hand side:

LAFA '=AA
N--A4AA r-AFA

Next, we note that in our typing faf’, the introduction of a socket withesses the creation of an
assumption and the introduction of a plug witnesses thdioreaf a conclusion. Similarly, the elimi-
nation of assumptions and conclusions corresponds to tioknigi of sockets and plugs. So, the natural
representation of negation iki would involve the binding of a plug and the introduction ofogleet or
vice versa.

Thus we extend the syntax &f to include the following two constructs:

Pu=...|x-Pa|xP-«
Which we type like this:
P: THaA A P: T, x:AFA
x-Px .- T,x:mAFA xP-ox - THa—A A

And reduce like this:

(yP-B)B T X(x-Q&) — Q&tyP
We can now interpret naming anpdabstraction by constructing a witness for double negadlon-

ination. We take an assumptiagh and negate it twice to produce—A then we eliminate the double
negation. This is expressedlirR sequents like so:

J

reA A NAFAA
r-AFA N'--A,AA
INe-—-AA r-—AFAA
N-AA

Compare the above with the sequents(fB€) and(_LI) given in§7.

26

This gives us the following witnesses:

\

P THaAA (y.B) - T,y AF B:A A
x-Px - T,xmAFA y(y.B)-y Fl—y:ﬁA,[S:A,A
a?(x-P&) - THE&--AA z- (/y\<y [3>) -T,zm=AF B:A A

(%(x-P&)-6)5 T 2(z- (¥ <y/5> Y)P) - TH A A
— (Y(y.B)¥)Ytx(x-Pa) .- TE B:A A
— Paty(yB):-TEpBAA

So we see that naming thenabstraction imu, which causes a pointer to the current continuation
to be saved on Bierman’s machine, corresponds to a renamikig (Note that when the term is run on
Bierman’s machine thg-abstraction will be reduced before the naming: when | sayimg followed
by u-abstraction” | am referring to the order of their appeaeaimcthe construction of the term.) Later
(in §11) we will see that a reference to the current continuatsosaved when a plug is bound, so it
makes sense to see here that naming ila@ipstraction corresponds to the binding of a plug and its
replacement by a free plug of a different name. We could itrfaake this more explicit by introducing
a new syntactic construct:

Pu=...|Pa-f

But since a renaming does the same thing (and avoids the oeegktte new propagation rules to go
with the new construct) there is little point in doing so. Bltiiat we do not need to retain our extension
of X that represents negation, that merely provides a ratidoathe above representation of saving a
continuation.

27

10 From X to Au

We have a translation frodt’ into Au [15] but it uses the version afu in whichnamingandu-abstraction
are combined in a single operation. As Bierman'’s abstracthina forAu [5] treats those operations
separately, we must use a translation fréhinto a version ofAu that keeps them separate. The trans-
lation of terms is the same but the proofs of its consistemeyna longer valid as we are translating
into a version ofAu with a different type system (a system containing the psaype L.) The proof
that reduction int’ is preserved in the target calculus is the same in both casese(we are using
the same translation and both versionsigfreduce in the same way) but a new proof that types are
preserved is needed (since the different versionsuwohave different typing systems.) As before, we
restrict ourselves to theBN subsystem.

10.1 The Translation

The translation consists of two stages. First we use a dawdgation translation (s€g) then we
recover the types. | know of no theoretical reason why sugloastage translation should be necessary
(since we are translating from a classical logic system athear classical logic system) but in practice it
seemsto be. The fact thit is based on natural deduction seems to require a transtatiotuitionistic
logic then a recovery back to classical logic. As we are usinlpuble negation translation, we need
some way to represent negation. We cannot_use an implication so we extend the typing system to
include a constarD.

Definition 10.1 (NEGATION)
Let Q be a type constant. Then'ifis a type

-T £ T—Q

Definition 10.2 (TRANSLATION OF TERMS)
The notationu!. M is shorthand fon. M wheren is a fresh name variable witl of type Q.

Txa) I = Ao.(ul.([a(Af.f0)))
TP [x] 7QIE = Ao.ut[w]Ay.ut.TQlEv up. TPUK

Tra)lf 2 [wlx T I
[PB-alll = [Af.F(Ay.up.MPIL)
TPB[x] QI = [w]x [PB[x] QI
TP txQl = TPax xQlf = [w]Ax.u!.TQU per. TP]X
TPa 7 xQlIN = [w]pe. TPILTQUY

Definition 10.3 (TRANSLATION OF TYPES)
ThecBsN interpretation of a typ& is defined by

TTlk = ~=TTl
If X is a type variable[[- || is defined inductively by

IxIy = x
TA—-BI = TAlN—TBI&
Note that we duplicate notation: we have two translatiorcfioms, one for terms and one for types,
both denoted byl - | ¥. Similarly, we have two functions both denoted [py]%’. This cannot lead to

confusion as it is clear from the context which function iemded and this helps to link the two stages
of the translation of terms with the two stages of the trdiwieof types.

28

10.2 Proof of Type Preservation

Lemma 10.4(WEAKENING)
The following rule is admissible:
(W) - Ay MEA | A
' F’ |_)\li M:A ’ A,

foranyl” D I'andA’ D A.

Weakening is used frequently in the following proof.

Recall thatu!.M is shorthand foun.M wheren is a fresh name variable wil of type Q. Thus
some name variables in the proof below may appear to havécdtgohames if the shorthands used
more than once in the same derivation. However, this is noblblgm as in each instance it represents
the binding of a fresh variable, so we know that the varialbkeschot appear anywhere else in the term
anda-conversion can be used if necessary.

Thus the following rule is admissible:

(') . I l_A/i M: L | A
U TR uLM:Q A

Lemma 10.5 IM:A thenAf.fM:=—A
Proof:

M M:A A
I fiA=QF\ ffA=Q | A I, fiA=Q bk, M:A| A
I ffA=Q bk fM:Q] A
Mau Af fM:(A—Q)—Q | A

(W)

Thus the following rule is admissible:

. rl—)\“ M:A ’ A
"Tha Af.fM:im=A | A

(%)

Theorem 10.6 If P :- T A, then[[T 5 Fa, TPIG:L | w:Q,TA]E.
Proof: By induction on the structure of derivations.
Recall that[T |4 = ([T|¥ —Q)—0.

(cap) : Then(x.a) :- T, x:AF oA, A.

[TI% oM AL P o[ALY [@@ AL
Tk oAl ﬁ," Fau Af.fo: TAIK | w:Q), TAlK
TrlE o:TALY Fag [(Af.fo): L | acTALlL w:Q, TALE "
Tk oAl ,‘\,U Fap pl o] (Af.f0):Q | e TAIKw:Q, TAJLY
T8 MAIR Fap :TALG | TADR I8 Aol [(Af fo):(TAIN = Q) | o TADR, w:Q, TAK
I8 x:TALN Fap xAo.pl o] (Af.f0):Q | e AR, w:Q, TALIN
TTIE, x:TALE Fay [w]xdo.ul[o](Af.fo): L | [AlG,w:Q, ALK

29

(exp : ThenxPa-p :- 't 3:A—B, A, with a subderivation foP :- ', x:A - a:B, A.

\ By Induction Hypothesis /

T8 TALS o TPLIR:L | e [BI K w:Q, TALR
T8 x:TAIS Fap pec TPIETBIE | w:Q, TALS
T8 Faw Ax.pe TPIETATN—=TBIE | w:Q, AL ()
ITUE Faw Afof Axpec TPIR):TA—BIE | w:Q, AN
ITIR Fau [BIAff (Axpe [PI): L | B: [A= Bl {,w:Q, TALY

(imp) : ThenP« [y] xQ :- T, y:A— B A, with subderivations forbotR :- ' a:A, AandQ :- T, x:B+ A,

\ By Induction Hypothesis /

IR Fau TPIR:L | e TALN, w:Q, TALG
TN o pec TPIRTAIY | @@, TALN
Tl o:TAIR—=TBIN Faw ope TPIRTBIR | wrQ, TALR

\ By Induction Hypothesis /

ITI& x:TBIR Fau TQIR:L | w:Q, AR)
TR x:TBIR . TQIRGQ | w:Q, ARG
TR Fap Axpl. TQIRTBIN—Q | w:Q, TAIIK
TN, o:TAIN=TBIK Fap Axpt QI opa [P 5:Q | :Q, TAIIK
Tk o:TAIK—=TBIL Fau [w]Ax.ul. Q] kopa TP &L | w:Q,[A]E "
T8, o:TAIR— BN Fa gl [w] Ax.p. TQUNopa. [P0 | w:Q, TAIG
TR Fau Aol Jw] Ax. . TQI opa TPIR:(TAIR—TBIN)—Q | w:Q,TALY

T, y:TA=BI{ Fa y:TA=BIS | TAIR
Trl&, y:TA—=BI& Fay yAro.u! [w]Ax.pl [Ql kopa. [P :Q | w:Q, AL
T8 y:TA—=BI & Fay [wlyAo.pl [w]Ax.w QI Nope. TPIN:L | w:Q,TAK

(cut) : ThenPa{xQ :- T+ A, with subderivations for bott® :- T - a:A, A andQ :- T, x:A F A.
There are two cases:

(inactive or right cuj :

\ By Induction Hypothesis /
TrIE x[A] F TQlEL | w:Q, TALE 0 \ By Induction Hypothesis /
TS x:TAIN Fap pt. TOIRQ | w:Q, AR TrlEa, TPIEL | ac[ALE w:Q, TALY
IR Fap Axpt TQIRTAIN =0] w:Q, TAIY IR Fa pe TPIRTALR | w:Q, AR

T8 Fag At TQ I o [P0 | w:Q,TA]K
T8 Fag [wAxwt TQ I o TP L | w:Q, TALN

30

(left cut) :

Lemma 10.7 1§ :- T, x:A A andQ introducesy then[T [l 5, TQIE :~TALL | w:Q,TAJ.

Proof: If Q introducesx thenQ is either acapsuleor animport
A

(x.B) S0Q :- T, x:AF B:A,Aand[[QlIE = Ao.ul.[B](Af.fo)

T o:TAIY Fap o:TATE | TAlR
I8 o: N AL Fap Affo: AT ALK
TR v:TALY b [BIAffo: L | TALY 0
T8 o:TALE Fa pl[BIAf.fo:Q | TADE Y
IT I8 Faw Aol [BIAf fo: TAIR —Q | B:TAILTALK

(%)

RB[x] 7S S0Q :- T, x:B—CF Aand[[QlIY = Av.u!. [w]Ay.pul. TS| hopB. TR K

\ By Induction Hypothesis /

ITUN Faw TRIG:L | B:TBIN, w:Q, TAIG
TN e B TRIGTBIR | @, TALIG
Irl& o:MBIN— TN e ou TRIGTCIR | wr, TALR

\ By Induction Hypothesis /

”rﬂr’\ll/y: ”CJ“\“_A;A ”SJ“\T:J— ’ w:Q/”Alm (,)
T8 y:TClR Fap . TSIN:Q | w:Q, AN
TR Fau Ayl TSIG(TCIN—Q) | w:Q, TALN
TN, v:TBIR—TCl Fau Ay TSI opuB. TRIG:Q | w:Q,TA]R
T8, o IBIE—TClE Fae [w Ayt TS TouB. TRIG:L | w:Q, TALE 0
Tk o[Blk—TClk Fau y!.[w]Ay.u!.WSﬂ FouB IRIE:Q | w:Q, AL
TN Fag Av.pt fw] Ay ul. TSI Ko TRIG:(TBIN—TCLR)—Q | w:0,TAIR

\ By Induction Hypothesis /
MTrik Fau TPlk:L | a: TAIK,w:Q, [A]4 \ By Lemma 10.7 /
T8 Fag po TPIGTALR | w:Q, ALK Tl e, WQJJLU:(WAJJ#'%Q) AL

TTIE e we TPIETQIN-Q | w:Q, TATE
T8 Fap [w]pee TPIETQIR L | w:Q, AL

31

11 From X to the Machine

Now that we have a consistent and complete translation ftoito Au, we can define a translation
from X to Bierman’s abstract machine. However, first we must eltieoon the reduction rules for
the machine. In Bierman’s system, naming discards the mucentinuation and restores a previously
saved continuation. But this relies on the fact that the mhwagiable is bound and therefore already
points to some previously saved continuation. This needadhe case: in fact, the translation from
X to Au creates terms containing free name variables (signifiedb)yWhat happens when a term
named by a free variable is reduced?

To see how this should work, refer to the idea of a controlkstaentioned irg2. We have seen that
a u-abstraction pushes the current context onto the conttokstnd a naming pops it. When you name
a term with a free variable, such asin our translation, you are popping the outermost conteat, i
returning control to the top of the stack. Hence a term suclwés! should be understood to mean
‘run M now”.

The translation from¥ to the machine is then as follows:

Definition 11.1 (FROM X' TO THE ABSTRACT MACHINE)
M) I3 2 (x(Ao.pt. o] (Af.f0)), £)
[gPB-al? = ([aAf.f(Ay.uB.TPIS),)
TP [x] 7QUR" = (x(Av.pt.[w])(Ay-u!- TQIK) (0w TPI))), L)
TPatxQlIR" = TPax Q™ = ((Ax.u!.TQUK) (e TPI), £)
TP #3QIR" £ ((uee.TPINTQIY, £)

We can see from these translations that when a ciitisitcut with a circuitQ, the context surround-
ing P is saved and referred to by the name of the plug bound in thdfdhat plug appears free in any
of the subcircuits oP then that context will be restored whenever the plug is entead. In effect, the
introduction of a plug equates to the storing of a referenca ¢ontinuation. While the plug remains
free, it will always refer to the outermost continuationg(tiop of the control stack.) However, when it
is bound the plug will then refer to the continuation at thenpat which it was bound.

We can illustrate this representation of continuationsdmgaring reduction i’ with reduction of
the translation oft’ circuits on the machine.

(cap) :
(y.0)@ t X(x.8) — (.B)
(

plw]x(Av.ul[BIAf . fo)) (pa. [w]y(Aw.ul. [a]Af. fw)), X)
L{w] (. [w]y(Aw.pl. [a] Af. fw)) (Av.pl. [B]Af . fv), T)
[w](pe. [w]y(Aw.pl.[a] Af. fw)) (Av.ul.[B]Af . fv),)
(ne[wly(Aw.pl.[a] Af. fw)) (Av.ul.[B]Af. fv),)
[w]y(Aw.pl.[a]Af fw), ZW {a — [o(Av.ul[B]Af.f0)]})
(y(Aw.pl.[a]Af.fw), ZW {a — [e(Av.ul.[B]Af.fV)]})

o[(y.a)a x(x.8) 5" runs to exactly the same dgy.a) || y" except thatx now points to a
continuation in which the result is applied qu./BHJ,’j'. This fits with the idea thak refers to
the continuation at the point where it was bound.

[{y.)a t %(x.6) I X"

B
— R

32

)& 1 Fx) —n TPB-y
x.ul[w]x(Aoul[YIAf.fo)) (uac [A F (M. [TPUE)),)

L[] (e [a]Af.f(Ay.uB. TP Q) (Av.ul-[Y]Af . fo), I)
) (e [JAf-f(Ay-uB.ITPIX)) (Av.ul.[¥]Af . fo),)

EE:)

/\/\/\/\/\/\/\/\ —

L R R A e

[

(pec[a] Af.f(Ay.uB.MPIR)) (Ao.uL[¥]Af.fo), Z)

o] Af f(Ay.uB.TPIN), T {a — [o(Av.pl[Y]Af.fO)]})

(Af-f (Ay-uB.TPIR)) (Aol [Y]Af o), T {a > [o(Av.uLY]Af fo)]})
(7\0 pL[YIAf fo) (Ay.uB.lTPLIR), W {a > [o(Av.pl.[y]M}‘-fv)]}>

uLIVIALF Ay TPUR), £ {a — [o(Av.ul. YA fO)l})
<[JAff(Ay.uB. TPIR), Zw {a = [o(Av.ul.[YIAf.fo)]})

Here the translation on the machine produces the same eastileX’ reduction but we can see

thata again refers to the continuation at the point where it wastouf yP3-« does not intro-

ducea then it must occur free inside. When a freex inside P is encountered it will restore the

continuation saved at the point where it was bound (in trée ctine cut withx.y) represented by
a context in which the result is applied fdx.y/) [|£'.)

(exp-outs’) : ~
(yPB-o)@ / XQ —n (§(P& /¥Q)B-7)7 1 3Q

[(7PB-a)a /TQIR" = ((uecla]Aff(Ay.up.TPIE) TQIN, £)
= ([JAf-F(AyuB.TPLR), @ {o — [o[QINT})
= ((AffQy-pB.TPITQIY, & {a — [oTQILT})
= (TQIX (Ay.uB.MTPIR), Zw {o — [o[QINT})

In this case we know that appears free insidE. It is less obvious that the abstract machine is
reducing towards the same result as standan reduction inX” but it is clear that, once again,
refers to the continuation at the point at which it was cuticlwiwill be restored when reduction
reaches afrea in P.

However, what is particularly notable is that all free naragables, e.gw in these examples, refer
to the outermost continuation. They point to the top of thetam stack. All other name variables
correspond to a plug that is bound in a cut. The plugs are allawnd in a cut “above” the point
at which they are encountered (i.e. further up the contmtksy Thus the continuations that are
restored will always cause control to move up the stack, m&deways. So we do not have first-class
continuations inY at all: we have something much more like exceptions.

33

12 Conclusion

| have shown thaft’, like other calculi based on classical logic, has the ghititrepresent the saving
and invoking of continuations. Unlike other calculi, sueWa andA¢, in which such representations
are syntactic extensions to a calculus without this abilitg modelling of control flow is an inherent
part of reduction inX'. Every cut involves the binding of a plug and every bindingagblug turns
that plug into a reference to the continuation at the poingnatit was bound. So our intuition that
inherently works in a “continuation-passing style” hasvato be correct.

However, X does not have first-class continuations. It is not possiblmdodel in X’ the kind of
behaviour that | demonstrated with Schem@2n Instead, the continuations /i are more structured:
they are restricted to moving up the control stack like arepkon. Although this might be considered a
good thing, as it means that is in some sense “well-behaved”, | would like to see furtineestigation
of the possibility of representing first-class continuasion X'. Intriguingly, Griffin suggests [7] that a
calculus needd. or at least some representation of negation in its typinteaysn order to represent
first-class continuations. It would be interesting to sttily extension ofY’ that represents negation
with that in mind.

If I had more time, | would like to have been able to invesigatcalculus with first-class con-
tinuations, such as Griffin’tdealised Schemén order to better understand the role of negation and
contradiction in the representation of continuations. uldalso like to have been able to construct an
abstract machine falt', rather than just a translation froAi into an abstract machine designed for a
different calculus. Similarly, 1 would like to study sometaal implementations of’. All of the above
would have been useful extensions of my project.

34

References

[1] Z. Ariola and H. Herbelin. Minimal classical logic andmtool operators. In J. P. J. C. M. Baeten,
J. K. Lenstra and G. J. Woeginger, editdrecture Notes in Computer Sciene®lume 2719 of
ICALP, pages 871-885, 2003. Available from: http://citesdqussi.edu/ariola03minimal.html.

[2] Z. Ariola, H. Herbelin, and A. Sabry. A type-theoreticuiodation of continuations and prompts.
In ICFP '04: Proceedings of the ninth ACM SIGPLAN internatiboanference on Functional
programming pages 40-53, New York, NY, USA, 2004. ACM Press.

[3] J. Avigad. Classical and constructive logic. Lecturdasp September 2000. Available from:
http://www.cs.cmu.eduéfp/courses/logic/lectures/lecture08.html.

[4] H. Barendregt. The Lambda Calculus: its Syntax and Semantierth-Holland, Amsterdam,
Netherlands, revised edition, 1984.

[5] G. M. Bierman. A computational interpretation of tAg-calculus. In L. Brim, J. Gruska, and
J. Zlatuska, editorRroceedings 23rd Int. Symp. on Math. Found. of Comp. ScjeMiE€S'98,
Brno, Czech Rep., 24-28 Aug. 1998lume 1450, pages 336—345. Springer-Verlag, Berlin3199

[6] N. G. de Bruijn. The mathematical language automath,stsge and some of its extensions. In
Symposium on automatic demonstration (IRIA, Versailleg8),9 ecture Notes in Mathematics
125, pages 29-61. Springer, 1970.

[7] T. G. Griffin. The formulae-as-types notion of control. n IConf. Record 17th An-
nual ACM Symp. on Principles of Programming Languages, P@®RLSan Francisco, CA,
USA, 17-19 Jan 1990pages 47-58. ACM Press, New York, 1990. Available from:
http://citeseer.ist.psu.edu/griffin90formulaeastyipisl.

[8] W. A. Howard. The formulae-as-types notion of constitt In J. P. Seldin and J. R. Hindley,
editors,To H. B. Curry: Essays on Combinatory Logic, Lambda Calcalnd Formalism pages
479-490. Academic Press, London, UK, 1980.

[9] J.-L. Krivine. Classical logic, storage operators apdand-order lambda-calculus. Amn. Pure
App. Logic volume 68, pages 63—78. Elsevier, 1994,

[10] D. Madore. A page about calllcc [online]. Available rno
http://mww.madore.orgtdavid/computers/callcc.html.

[11] J. Moschovakis. Intuitionistic logic. In E. N. Zalta, diéor, The Stanford En-
cyclopedia of Philosophy Stanford University, Spring 2007. Available from:
http://plato.stanford.edu/archives/spr2007/entiogsz-intuitionistic/.

[12] C.-H. L. Ong and C. A. Stewart. A Curry-Howard foundatifor functional computation with
control. InConf. Record 24th ACM SIGPLAN-SIGACT Symp. on PrincipleBragramming
Languages, POPL'97, Paris, France, 15-17 Jan. 1988ges 215-227. ACM Press, New York,
1997. Available from: http://citeseer.ist.psu.edu/ong@ryhoward.html.

[13] M. Parigot. Lambda-mu-calculus: An algorithmic ingestation of classical natural deduction. In
LPAR '92: Proceedings of the International Conference ogit.drogramming and Automated
Reasoningpages 190-201, London, UK, 1992. Springer-Verlag.

[14] M. E. Szabo, editorThe Collected Papers of Gerhard Gentz&tudies in Logic and the Foun-
dations of Mathematics. North-Holland, Amsterdam, Ndtrets, 1969.

[15] S. van Bakel and P. Audebaud. Understandiigvith Ai. INRIA No. 00097235, September
2006.

[16] S.van Bakel and P. Lescanne. Computation with claksaguents. Unpublished.

[17] A. N. Whitehead and B. RussellPrincipia Mathematica Cambridge University Press, 2nd
edition, 1925.

[18] Wikipedia. Continuation [online]. Available from: tpt//en.wikipedia.org/wiki/Continuation.

35

