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Suppose we wish to numerically model some physical
phenomenon in a certain volume of space.

The first step will be to discretize that continuous space into a
grid of discrete cells. We will then be able to represent physical
quantities within that space as numbers associated with each cell.

Many physical phenomena can be modelled by differential
equations. We will therefore need a way to numerically
approximate the solutions to differential equations using our
discretized grid.
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The derivative off(x) is defined like so:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

If we are to approximate a derivative numerically then we cannot
actually have anh of zero.h corresponds to the spacing of our
grid, the granularity of our discretization, the width of each cell.
It is sometimes known as thestep size. If h were zero then we
would have a continuous space again.

We need to approximatef ′(x) whereh is a fixed value.
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Taylor’s theorem says that, assumingf(x) is continuously
differentiablen times,

f(x+h) = f(x)+
f ′(x)

1!
h+

f ′′(x)

2!
h2+. . .+

fn(x)

n!
hn+Rn(x+h)

WhereRn(x+ h) is a remainder term denoting the difference
between the Taylor polynomial of degreen and the actual value
of f(x+ h).

This remainder term can be expressed in various ways, one of
which is the Lagrange form. Here it is stated that there exists a
numberξ betweenx andx+ h such that

Rn(x+ h) =
f (n+1)(ξ)

(n+ 1)!
hn+1
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Consider the first order Taylor polynomial:

f(x+ h) = f(x) + f ′(x)h+
f ′′(ξ)

2
h2

Rearrange it:

f(x+ h)− f(x)

h
= f ′(x) +

f ′′(ξ)

2
h

Note that on the right-hand side of the equality we have the
function that we wish to approximate,f ′(x), plus a remainder
term.

Therefore the term on the left-hand side of the equality is an
approximation tof ′(x) with an error proportional toh. We call
this error thetruncation error.
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Recall the definition of the derivative:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

It makes intuitive sense that this

f(x+ h)− f(x)

h

should be an approximation tof ′(x) whose error decreases ash

gets smaller.

The derivation of the approximation from the Taylor polynomial
proves that the error isO(h).
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A finite difference is any mathematical expression of the form

f(x+ a)− f(x− b)

The numerator of our approximation from the last slide is known
as theForward Difference:

∆h[f ](x) = f(x+ h)− f(x)

Two other commonly used finite differences are the
Backward Difference:

∇h[f ](x) = f(x)− f(x− h)

And theCentral Difference:

δh[f ](x) = f(x+
h

2
)− f(x−

h

2
)
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Recall the Taylor polynomial forf(x− h):

f(x− h) = f(x)− f ′(x)h+
f ′′(ξ)

2
h2

Rearrange to obtain this:

f(x)− f(x− h)

h
= f ′(x) +

f ′′(ξ)

2
h

And we see that if we approximatef ′(x) using the backward
difference we get a truncation error ofO(h) just as we did with
the forward difference.
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Consider the Taylor polynomial forf(x+ h

2 ):

f(x+
h

2
) = f(x) +

f ′(x)h

2
+

f ′′(x)h2

8
+

f ′′′(ξ)

48
h3

And for f(x− h

2 ):

f(x−
h

2
) = f(x)−

f ′(x)h

2
+

f ′′(x)h2

8
+

f ′′′(ξ)

48
h3

Therefore:

f(x+ h

2 )− f(x− h

2 )

h
= f ′(x) +

(f ′′′(ξ1)− f ′′′(ξ2))h
2

48

The truncation error isO(h2). Ash gets smaller, the error will
tend to zero faster than it would if it wereO(h). Thus this is a
better approximation than the forward or backward difference.
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Note that the central difference as presented on the last slide may
be problematic. We don’t really want to use fractions ofh as that
amounts to changing the step size.

We can achieve an approximation with a truncation error of the
same order by averaging the forward and backward differences:

f(x+ h)− f(x− h)

2h
= f ′(x) +

(f ′′′(ξ1)− f ′′′(ξ2))h
2

6
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All the finite difference formulae introduced so far have been
approximations for the same function:f ′(x)

But they have different truncation errors:

f(x)− f(x− h)

h
⇒ O(h) “First Order”

f(x+ h)− f(x)

h
⇒ O(h) “First Order”

f(x+ h)− f(x− h)

2h
⇒ O(h2) “Second Order”

We can construct formulae that approximate derivatives to an
arbitrary order of accuracy.
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Let ak be the coefficient by which we multiplyf(x+ kh). Then:

f(x+ h)− f(x− h)

2h
=

1

h

1
∑

k=−1

akf(x+ kh)

where
a−1 = −

1

2
a0 = 0

a1 =
1

2

We can represent any finite difference formula as a sum of
subformulae in this way.

With a bit of linear algebra we can ensure that, when the
subformulae are summed, the unwanted terms in the Taylor
series sum to zero.
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Represent thek terms in the Taylor polynomial forf(x+ kh) as
a column vector. LetA be a matrix composed of such vectors for
variousk.

There will be one column for eachk, i.e. each offset fromx, that
we wish to consider.

The first row will correspond to thef(x) term in each
polynomial, each further row will correspond to a derivativefrom
f ′(x) up tof (n)(x) wheren+ 1 is the order of accuracy we wish
to achieve.
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To obtain appropriate coefficients such that when we sum the
polynomials we are left with onlyf ′(x), just solve the following
equation forc:

Ac =















0
1
0
...
0















For example, the central difference can be derived like this:





1 1 1
−1 0 1
1
2 0 1

2









−1
2
0
1
2



 =





0
1
0




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Here are some central finite difference approximations tof ′(x)
of various orders of accuracy:

Accuracy a−4 a−3 a−2 a−1 a0 a1 a2 a3
a4

O(h2) −

1

2
0 1

2

O(h4) 1

12
−

2

3
0 2

3
−

1

12

O(h6) −

1

60

3

20
−

3

4
0 3

4
−

3

20

1

60

O(h8) 1

280
−

4

105

1

5
−

4

5
0 4

5
−

1

5

4

105

−

1

280
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So far we have only constructed approximations tof ′(x). We
could use the same technique to construct approximations to
other derivatives.

For example, if we wish to approximatef ′′(x) rather thanf ′(x),
then instead of solving this forc:

Ac =



















0
1
0
0
...
0



















We solve this: Ac =



















0
0
1
0
...
0



















By changing the vector on the right-hand side of the equation, we
can construct an approximation to any linear combination of
derivatives.
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Unfortunately, truncation of the Taylor series is not the only
source of error. We must also contend withround-off error.

In a practical computing system we have only a limited number
of bits available to represent each number, so we cannot
represent all real numbers exactly but must round them off to the
nearest representable number.

This is analogous to an attempt to represent1
3 in decimal notation

with only a finite number of digits.
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Let
f(x) = g(x) + e(x)

wheree(x) is the round-off error when computingf(x). Then

f ′(x) =
g(x+ h)− g(x− h)

2h
+ E(f, h)

whereE(f, h) is the total error including both truncation error
and round-off error:

E(f, h) =
e(x+ h)− e(x− h)

2h
+

(f ′′′(ξ1)− f ′′′(ξ2))h
2

6

Assume that|e(x)| < ǫ and|(f ′′′(ξ1)− f ′′′(ξ2))| < M :

|E(f, h)| <
ǫ

h
+

Mh2

6
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Note that the round-off error is inversely proportional toh but the
truncation error is proportional toh2. Therefore:

• If we decreaseh in order to decrease the truncation error,
we increase the round-off error.

• If we increaseh in order to decrease the round-off error, we
increase the truncation error.

Note that if we knowǫ andM we can calculate the optimalh.
We typically do knowǫ as it is a property of whichever
computing system we choose to use.

We might knowM , especially if we are approximating a
trigonometric function and therefore know, for example, that
∣

∣f (n)(x)
∣

∣ ≤ 1.
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Usually, we are attempting to model some physical phenomenon
as it changes over time.

So we don’t usually calculate finite differences only once: we
calculate them repeatedly, each calculation giving us the state of
the physical system in the next time step.

Note that this means we are discretizing time as well as space.
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Given that we have an error in every calculation (due to both
round-off and truncation), what happens to that error over
repeated iterations?

If the difference between our approximation and the true solution
remains constant or decreases, we say our method is numerically
stable. If the error grows with each iteration then we say that it is
unstable.

Different differential equations have different sensitivities to
error, especially truncation error. Very sensitive equations,which
are unstable unlessh is very small, are known asstiff equations.

Numerical stability is a problem for all numerical methods, not
just finite difference. Different methods differ in their ability to
cope with stiff equations.
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Suppose we know the state of a physical system at timet and we
wish to calculate the state at timet+ 1. There are two possible
ways that the relationship betweenSt andSt+1 could be
expressed using differential equations, and hence two different
styles of finite difference.

If we can calculate the next state directly from the current state
like this:

St+1 = f(St)

Then we call our methodexplicit finite difference.

If the next and current states are indirectly related like this:

f(St, St+1) = R

Then we call our methodimplicit finite difference.
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St+1 = f(St)

Explicit finite difference calculations are typically quite fast,
simply because we directly calculate a function of the current
state in order to get the next state.

However, explicit finite difference is not very numericallystable.
If the function involves stiff equations, we have to use a smallh

to keep the method stable, which may cancel out any benefit we
receive from being able to calculate the next state directly.

If the differential equations are not very stiff then explicit finite
difference will be one of the better ways to approximate their
solution.
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f(St, St+1) = R

At every iteration of an implicit finite difference method, we
must solve a system of equations. This typically involves a lot
more computation than the direct computation of explicit finite
difference.

In practice, it probably involves a sparse matrix operation, which
is even worse on today’s computing platforms.

However, implicit finite difference methods are much more
numerically stable than explicit ones. Thus they can solve stiffer
equations with larger step sizes.
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