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Discretization

Suppose we wish to numerically model some physical
phenomenon in a certain volume of space.

The first step will be to discretize that continuous space into a
grid of discrete cells. We will then be able to represent physical
guantities within that space as numbers associated with edch ce

Many physical phenomena can be modelled by differential
equations. We will therefore need a way to numerically
approximate the solutions to differential equations using ou
discretized grid.
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Approximating Derivatives

The derivative off (x) is defined like so:

fe) - i LD (@)

h—0 h

If we are to approximate a derivative numerically then wencdn
actually have am of zero.h corresponds to the spacing of our
grid, the granularity of our discretization, the width of ball.

It is sometimes known as tlssep size. If A were zero then we
would have a continuous space again.

We need to approximatf (x) whereh is a fixed value.
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Taylor’'s Theorem

Taylor's theorem says that, assumifige) is continuously
differentiablen times,

f@, '@, @

flath) = fz)+=; o o

h"+R,(x+h)

WhereR, (z + h) is a remainder term denoting the difference
between the Taylor polynomial of degreeand the actual value

of f(x + h).

This remainder term can be expressed in various ways, one of

which is the Lagrange form. Here it is stated that there exists a

number¢ betweenr andx + h such that

f(n—l_l) (f) hn—l—l

R,(x+h) = CES
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An Approximation

Consider the first order Taylor polynomial:

Flo+ 1) = £la) + £/ @h+ L1
Rearrange it:
fle+h)—flx) _ 1 (€)
h =F@)+h

Note that on the right-hand side of the equality we have the
function that we wish to approximaté’(x), plus a remainder
term.

Therefore the term on the left-hand side of the equality is an
approximation tof’(x) with an error proportional té. We call
this error theruncation error.
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Intuitive Derivation

Recall the definition of the derivative:

f/(:l?) — lim flx+h)— f(z)

h—0 h

It makes intuitive sense that this

flx+h)— f(=)
h

should be an approximation 3(x) whose error decreases/as
gets smaller.

The derivation of the approximation from the Taylor polynam
proves that the error ©(h).
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Finite Differences

A finite difference is any mathematical expression of the form

fle+a) = flz —0)

The numerator of our approximation from the last slide is known
as theForward Difference:

Aplfl(z) = f(@ +h) = f(z)

Two other commonly used finite differences are the
Backward Difference:
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Backward Difference

Recall the Taylor polynomial fof (z — h):

Flo— 1) = £(a) - f/@h+ L1

Rearrange to obtain this:

flz) — flz—h)

1"(€)
3 h

— f/(@)+ 15

And we see that if we approximajé(z) using the backward
difference we get a truncation error ©f h) just as we did with
the forward difference.
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tend to zero faster than it would if it wer@(h). Thus this is a
better approximation than the forward or backward diffeeen

Therefore:

(F"(€) = (&)1
48

~['(@)+
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Fractional Step Sizes

Note that the central difference as presented on the last shge m
be problematic. We don’t really want to use fractions:&fs that
amounts to changing the step size.

We can achieve an approximation with a truncation error ef th
same order by averaging the forward and backward differences:

fx+h)— f(z—h) (f"(&) — f"(&))h?
2h 6

~ @)+
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Orders of Accuracy

All the finite difference formulae introduced so far have been

approximations for the same functioff:(x)

But they have different truncation errors:

f(z) — flz —h)

” = O(h)
flx+h) - fz)

; = O(h)

fle+h) = flz—h) :

o, = O(h*)

“First Order”

“First Order”

“Second Order”

We can construct formulae that approximate derivatives to an

arbitrary order of accuracy.
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Summing Subformulae

Let a;. be the coefficient by which we multiply(xz + kh). Then:

1
Heth) el L5
k=—1

where 1

a_1 — —5
ag = 0
1
ay — 5

We can represent any finite difference formula as a sum of
subformulae in this way.

With a bit of linear algebra we can ensure that, when the
subformulae are summed, the unwanted terms in the Taylor
series sum to zero.
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Choosing Coefficients (1)

Represent thé terms in the Taylor polynomial fof (x + kh) as
a column vector. Le#d be a matrix composed of such vectors for
variousk.

There will be one column for eadh I.e. each offset frome, that
we wish to consider.

The first row will correspond to th¢(x) term in each
polynomial, each further row will correspond to a derivatingm
f'(x) up to f(™(z) wheren + 1 is the order of accuracy we wish
to achieve.
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Choosing Coefficients (2)

To obtain appropriate coefficients such that when we sum the
polynomials we are left with only’(x), just solve the following
equation fore:
0)
&

0

5y

For example, the central difference can be derived like this:

Ac

1 1 1 —3 0
-1 0 1 0 | =11
1 1 1

5 0 3 2 0
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e Subformulae O(h6) 1 3 3 0 3 3 1
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Other Derivatives

So far we have only constructed approximationg’ta:). We
could use the same technique to construct approximations to
other derivatives.

For example, if we wish to approximafé (x) rather thanf’(z),
then instead of solving this fat.

0 0
(0 (0
0 1
Ac = 0 We solve this: Ac = 0

o o)

By changing the vector on the right-hand side of the equatien, w
can construct an approximation to any linear combination of
derivatives.
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Round-off Error

Unfortunately, truncation of the Taylor series is not theyonl
source of error. We must also contend witlund-off error.

In a practical computing system we have only a limited number
of bits available to represent each number, so we cannot
represent all real numbers exactly but must round them offdo th
nearest representable number.

This is analogous to an attempt to repres}am decimal notation
with only a finite number of digits.
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Calculating Error

Let
f(z) = g(z) + e(2)

wheree(x) is the round-off error when computingz). Then

gz +h)—g(z—h)

f'(z) = 7 + E(f,h)

whereFE(f, h) is the total error including both truncation error
and round-off error:

e\xr —elr — " ) — /" . 2
E(f,h) = ( +h)2h( h) . ("(&) 6f (&2))h

Assume thate(x)| < e and|(f" (&) — [ (&2))] < M:

e MAh?
E(f,h — 4+ —
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The Step-Size Dilemma

Note that the round-off error is inversely proportionahtbut the
truncation error is proportional te?. Therefore:

e If we decreasé in order to decrease the truncation error,
we increase the round-off error.

e If we Increaseh in order to decrease the round-off error, we
Increase the truncation error.

Note that if we knowe and M we can calculate the optimal
We typically do knowe as it is a property of whichever
computing system we choose to use.

We might know/, especially if we are approximating a
trigonometric function and therefore know, for examplet tha
FM ()] <1.
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lterations

Usually, we are attempting to model some physical phenomenol
as it changes over time.

So we don’t usually calculate finite differences only once: we
calculate them repeatedly, each calculation giving us the sif
the physical system in the next time step.

Note that this means we are discretizing time as well as space.
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Numerical Stability

Given that we have an error in every calculation (due to both
round-off and truncation), what happens to that error over
repeated iterations?

If the difference between our approximation and the truetswiu
remains constant or decreases, we say our method is numerical
stable. If the error grows with each iteration then we say that |
unstable.

Different differential equations have different sensitestto
error, especially truncation error. Very sensitive equatiarsch
are unstable unlegsis very small, are known agiff equations.

Numerical stabllity is a problem for all numerical methodst, no
just finite difference. Different methods differ in their btyi to
cope with stiff equations.
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Implicit or Explicit

Suppose we know the state of a physical system at#iare we
wish to calculate the state at time- 1. There are two possible
ways that the relationship betweSpand.S;, ; could be
expressed using differential equations, and hence two differen
styles of finite difference.

If we can calculate the next state directly from the currenesta
like this:

St+1 = f(St)

Then we call our methoékxplicit finite difference.

If the next and current states are indirectly related liks:thi

f(St, St41) = R

Then we call our methoomplicit finite difference.
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Explicit Finite Difference

St+1 = f(5t)

Explicit finite difference calculations are typically gaifast,
simply because we directly calculate a function of the current
state in order to get the next state.

However, explicit finite difference is not very numericaditable.

If the function involves stiff equations, we have to use a siall

to keep the method stable, which may cancel out any benefit we
receive from being able to calculate the next state directly.

If the differential equations are not very stiff then exgdlfonite
difference will be one of the better ways to approximaterthei
solution.
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Implicit Finite Difference

f(St; Sty1) = R

At every iteration of an implicit finite difference methodew
must solve a system of equations. This typically involves a ot
more computation than the direct computation of explicitdni
difference.

In practice, it probably involves a sparse matrix operatiamgcwv
IS even worse on today’s computing platforms.

However, implicit finite difference methods are much more
numerically stable than explicit ones. Thus they can solveestiff
equations with larger step sizes.
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